Topology of Locally and Non-Locally Generalized Derivatives

This article investigates the continuity of derivatives of real-valued functions from a topological perspective. This is achieved by the characterization of their sets of discontinuity. The same principle is applied to Gateaux derivatives and gradients in Euclidean spaces. This article also introduc...

Full description

Saved in:
Bibliographic Details
Main Author: Dimiter Prodanov
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/1/53
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article investigates the continuity of derivatives of real-valued functions from a topological perspective. This is achieved by the characterization of their sets of discontinuity. The same principle is applied to Gateaux derivatives and gradients in Euclidean spaces. This article also introduces a generalization of the derivatives from the perspective of the modulus of continuity and characterizes their sets of discontinuities. There is a need for such generalizations when dealing with physical phenomena, such as fractures, shock waves, turbulence, Brownian motion, etc.
ISSN:2504-3110