Reconstructed global monthly burned area maps from 1901 to 2020

<p><span id="page3600"/>Fire is a key Earth system process, driving variability in the global carbon cycle through CO<span class="inline-formula"><sub>2</sub></span> emissions into the atmosphere and subsequent CO<span class="inline-for...

Full description

Saved in:
Bibliographic Details
Main Authors: Z. Guo, W. Li, P. Ciais, S. Sitch, G. R. van der Werf, S. P. K. Bowring, A. Bastos, F. Mouillot, J. He, M. Sun, L. Zhu, X. Du, N. Wang, X. Huang
Format: Article
Language:English
Published: Copernicus Publications 2025-07-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/17/3599/2025/essd-17-3599-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850068735636799488
author Z. Guo
W. Li
P. Ciais
S. Sitch
G. R. van der Werf
S. P. K. Bowring
A. Bastos
F. Mouillot
J. He
M. Sun
L. Zhu
X. Du
N. Wang
X. Huang
author_facet Z. Guo
W. Li
P. Ciais
S. Sitch
G. R. van der Werf
S. P. K. Bowring
A. Bastos
F. Mouillot
J. He
M. Sun
L. Zhu
X. Du
N. Wang
X. Huang
author_sort Z. Guo
collection DOAJ
description <p><span id="page3600"/>Fire is a key Earth system process, driving variability in the global carbon cycle through CO<span class="inline-formula"><sub>2</sub></span> emissions into the atmosphere and subsequent CO<span class="inline-formula"><sub>2</sub></span> uptake through vegetation recovery after fires. Global spatiotemporally consistent datasets on burned area have been available since the beginning of the satellite era in the 1980s, but they are sparse prior to that date. In this study, we reconstructed global monthly burned area at a resolution of 0.5° <span class="inline-formula">×</span> 0.5° from 1901 to 2020 using machine learning models trained on satellite-based observations of burned area between 2003 and 2020, with the goal of reconstructing long-term burned area information to constrain historical fire simulations. We first conducted a classification model to separate grid cells with extreme (burned area <span class="inline-formula">≥</span> the 90th percentile in a given region) or regular fires. We then trained separate regression models for grid cells with extreme or regular fires. Both the classification and regression models were trained on a satellite-based burned area product (FireCCI51), using explanatory variables related to climate, vegetation and human activities. The trained models can well reproduce the long-term spatial patterns (slopes <span class="inline-formula">=</span> 0.70–1.28 and <span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.69–0.98 spatially), inter-annual variability and seasonality of the satellite-based burned area observations. After applying the trained model to the historical period, the predicted annual global total burned area ranges from <span class="inline-formula">3.46×10<sup>6</sup></span> to <span class="inline-formula">4.58×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> over 1901–2020 with regular and extreme fires accounting for <span class="inline-formula">1.36×10<sup>6</sup></span>–<span class="inline-formula">1.74×10<sup>6</sup></span> and <span class="inline-formula">2.00×10<sup>6</sup></span>–<span class="inline-formula">3.03×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>, respectively. Our models estimate a global decrease in burned area during 1901–1978 (slope <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.009</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="156da0f1cae7754b8b55576d28e63413"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-3599-2025-ie00001.svg" width="65pt" height="14pt" src="essd-17-3599-2025-ie00001.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−2</sup></span>), followed by an increase during 1978–2008 (slope <span class="inline-formula">=</span> <span class="inline-formula">0.020×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−2</sup></span>), and then a stronger decline in 2008–2020 (slope <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.049</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="911ffe07e214d2086b782e49fe98c7ed"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-3599-2025-ie00002.svg" width="65pt" height="14pt" src="essd-17-3599-2025-ie00002.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−2</sup></span>). Africa was the continent with the largest burned area globally during 1901–2020, and its trends also dominated the global trends. We validated our predictions against charcoal records, and our product exhibits a high overall accuracy in simulating fire occurrence (<span class="inline-formula">&gt;80</span> %) in boreal North America, southern Europe, South America, Africa and southeast Australia, but the overall accuracy is relatively lower in northern Europe and Asia (<span class="inline-formula">&lt;50</span> %). In addition, we compared our burned area data with multiple independent regional burned area maps in Canada, the USA, Brazil, Chile and Europe, and found general consistency in the spatial patterns (linear regression slopes ranging 0.84–1.38 spatially) and the inter-annual variability. The global monthly 0.5° <span class="inline-formula">×</span> 0.5° burned area fraction maps for 1901–2020 presented by this study can be downloaded for free from <span class="uri">https://doi.org/10.5281/zenodo.14191467</span> (Guo and Li, 2024).</p>
format Article
id doaj-art-ee03bbe8378f4bdab9008d4210ecfbad
institution DOAJ
issn 1866-3508
1866-3516
language English
publishDate 2025-07-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj-art-ee03bbe8378f4bdab9008d4210ecfbad2025-08-20T02:47:59ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162025-07-01173599361810.5194/essd-17-3599-2025Reconstructed global monthly burned area maps from 1901 to 2020Z. Guo0W. Li1P. Ciais2S. Sitch3G. R. van der Werf4S. P. K. Bowring5A. Bastos6F. Mouillot7J. He8M. Sun9L. Zhu10X. Du11N. Wang12X. Huang13Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, ChinaDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, ChinaLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceFaculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UKEnvironmental Sciences Group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the NetherlandsLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceInstitute for Earth System Science and Remote Sensing, Leipzig University, Talstr. 35, 04103 Leipzig, GermanyUMR CEFE 5175, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, FranceState Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, ChinaDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, ChinaDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, ChinaDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, ChinaDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, ChinaDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China<p><span id="page3600"/>Fire is a key Earth system process, driving variability in the global carbon cycle through CO<span class="inline-formula"><sub>2</sub></span> emissions into the atmosphere and subsequent CO<span class="inline-formula"><sub>2</sub></span> uptake through vegetation recovery after fires. Global spatiotemporally consistent datasets on burned area have been available since the beginning of the satellite era in the 1980s, but they are sparse prior to that date. In this study, we reconstructed global monthly burned area at a resolution of 0.5° <span class="inline-formula">×</span> 0.5° from 1901 to 2020 using machine learning models trained on satellite-based observations of burned area between 2003 and 2020, with the goal of reconstructing long-term burned area information to constrain historical fire simulations. We first conducted a classification model to separate grid cells with extreme (burned area <span class="inline-formula">≥</span> the 90th percentile in a given region) or regular fires. We then trained separate regression models for grid cells with extreme or regular fires. Both the classification and regression models were trained on a satellite-based burned area product (FireCCI51), using explanatory variables related to climate, vegetation and human activities. The trained models can well reproduce the long-term spatial patterns (slopes <span class="inline-formula">=</span> 0.70–1.28 and <span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.69–0.98 spatially), inter-annual variability and seasonality of the satellite-based burned area observations. After applying the trained model to the historical period, the predicted annual global total burned area ranges from <span class="inline-formula">3.46×10<sup>6</sup></span> to <span class="inline-formula">4.58×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> over 1901–2020 with regular and extreme fires accounting for <span class="inline-formula">1.36×10<sup>6</sup></span>–<span class="inline-formula">1.74×10<sup>6</sup></span> and <span class="inline-formula">2.00×10<sup>6</sup></span>–<span class="inline-formula">3.03×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>, respectively. Our models estimate a global decrease in burned area during 1901–1978 (slope <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.009</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="156da0f1cae7754b8b55576d28e63413"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-3599-2025-ie00001.svg" width="65pt" height="14pt" src="essd-17-3599-2025-ie00001.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−2</sup></span>), followed by an increase during 1978–2008 (slope <span class="inline-formula">=</span> <span class="inline-formula">0.020×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−2</sup></span>), and then a stronger decline in 2008–2020 (slope <span class="inline-formula">=</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.049</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="911ffe07e214d2086b782e49fe98c7ed"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-3599-2025-ie00002.svg" width="65pt" height="14pt" src="essd-17-3599-2025-ie00002.png"/></svg:svg></span></span> km<span class="inline-formula"><sup>2</sup></span> yr<span class="inline-formula"><sup>−2</sup></span>). Africa was the continent with the largest burned area globally during 1901–2020, and its trends also dominated the global trends. We validated our predictions against charcoal records, and our product exhibits a high overall accuracy in simulating fire occurrence (<span class="inline-formula">&gt;80</span> %) in boreal North America, southern Europe, South America, Africa and southeast Australia, but the overall accuracy is relatively lower in northern Europe and Asia (<span class="inline-formula">&lt;50</span> %). In addition, we compared our burned area data with multiple independent regional burned area maps in Canada, the USA, Brazil, Chile and Europe, and found general consistency in the spatial patterns (linear regression slopes ranging 0.84–1.38 spatially) and the inter-annual variability. The global monthly 0.5° <span class="inline-formula">×</span> 0.5° burned area fraction maps for 1901–2020 presented by this study can be downloaded for free from <span class="uri">https://doi.org/10.5281/zenodo.14191467</span> (Guo and Li, 2024).</p>https://essd.copernicus.org/articles/17/3599/2025/essd-17-3599-2025.pdf
spellingShingle Z. Guo
W. Li
P. Ciais
S. Sitch
G. R. van der Werf
S. P. K. Bowring
A. Bastos
F. Mouillot
J. He
M. Sun
L. Zhu
X. Du
N. Wang
X. Huang
Reconstructed global monthly burned area maps from 1901 to 2020
Earth System Science Data
title Reconstructed global monthly burned area maps from 1901 to 2020
title_full Reconstructed global monthly burned area maps from 1901 to 2020
title_fullStr Reconstructed global monthly burned area maps from 1901 to 2020
title_full_unstemmed Reconstructed global monthly burned area maps from 1901 to 2020
title_short Reconstructed global monthly burned area maps from 1901 to 2020
title_sort reconstructed global monthly burned area maps from 1901 to 2020
url https://essd.copernicus.org/articles/17/3599/2025/essd-17-3599-2025.pdf
work_keys_str_mv AT zguo reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT wli reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT pciais reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT ssitch reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT grvanderwerf reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT spkbowring reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT abastos reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT fmouillot reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT jhe reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT msun reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT lzhu reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT xdu reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT nwang reconstructedglobalmonthlyburnedareamapsfrom1901to2020
AT xhuang reconstructedglobalmonthlyburnedareamapsfrom1901to2020