Deoxygenative photochemical alkylation of secondary amides enables a streamlined synthesis of substituted amines

Abstract Secondary amines are vital functional groups in pharmaceuticals, agrochemicals, and natural products, necessitating efficient synthetic methods. Traditional approaches, including N-monoalkylation and reductive amination, suffer from limitations such as poor chemoselectivity and complexity....

Full description

Saved in:
Bibliographic Details
Main Authors: Antonio Pulcinella, Stefano Bonciolini, Robin Stuhr, Damiano Diprima, Minh Thao Tran, Magnus Johansson, Axel Jacobi von Wangelin, Timothy Noël
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56234-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Secondary amines are vital functional groups in pharmaceuticals, agrochemicals, and natural products, necessitating efficient synthetic methods. Traditional approaches, including N-monoalkylation and reductive amination, suffer from limitations such as poor chemoselectivity and complexity. Herein, we present a streamlined deoxygenative photochemical alkylation of secondary amides, enabling the efficient synthesis of α-branched secondary amines. Our method leverages triflic anhydride-mediated semi-reduction of amides to imines, followed by a photochemical radical alkylation step. This approach broadens the synthetic utility of amides, facilitating late-stage modifications of drug-like molecules and the synthesis of saturated N-substituted heterocycles. The pivotal role of flow technology in developing a scalable and robust process underscores the practicality of this method, significantly expanding the organic chemist’s toolbox for complex amine synthesis.
ISSN:2041-1723