Energy-Efficient Prediction Clustering Algorithm for Multilevel Heterogeneous Wireless Sensor Networks

In designing wireless sensor networks, it is important to reduce energy dissipation and prolong network lifetime. This paper presents research on the existing clustering algorithm applied in heterogeneous sensor networks and then puts forward an energy-efficient prediction clustering algorithm, whic...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian Peng, Tang Liu, Hongyou Li, Bing Guo
Format: Article
Language:English
Published: Wiley 2013-02-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2013/678214
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In designing wireless sensor networks, it is important to reduce energy dissipation and prolong network lifetime. This paper presents research on the existing clustering algorithm applied in heterogeneous sensor networks and then puts forward an energy-efficient prediction clustering algorithm, which is adaptive to sensor networks with energy and objects heterogeneous. This algorithm enables the nodes to select the cluster head according to factors such as energy and communication cost, thus the nodes with higher residual energy have higher probability to become a cluster head than those with lower residual energy, so that the network energy can be dissipated uniformly. In order to reduce energy consumption when broadcasting in clustering phase and prolong network lifetime, an energy consumption prediction model is established for regular data acquisition nodes. Simulation results show that compared with current clustering algorithms, this algorithm can achieve longer sensor network lifetime, higher energy efficiency, and superior network monitoring quality.
ISSN:1550-1477