Air-pollution-satellite-based CO<sub>2</sub> emission inversion: system evaluation, sensitivity analysis, and future research direction
<p>Simultaneous monitoring of greenhouse gases and air pollutant emissions is crucial for combating global warming and air pollution. We previously established an air-pollution-satellite-based carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>)...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2025-02-01
|
| Series: | Atmospheric Chemistry and Physics |
| Online Access: | https://acp.copernicus.org/articles/25/1949/2025/acp-25-1949-2025.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | <p>Simultaneous monitoring of greenhouse gases and air pollutant emissions is crucial for combating global warming and air pollution. We previously established an air-pollution-satellite-based carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emission inversion system, successfully capturing CO<span class="inline-formula"><sub>2</sub></span> and nitrogen oxide (NO<span class="inline-formula"><sub><i>x</i></sub></span>) emission fluctuations amid socioeconomic changes. However, the system's robustness and weaknesses have not yet been fully evaluated. Here, we conduct a comprehensive sensitivity analysis with 31 tests on various factors including prior emissions, model resolution, satellite constraint, and inversion system configuration to assess the vulnerability of emission estimates across temporal, sectoral, and spatial dimensions. The relative change (RC) between these tests and base inversion reflects the different configurations' impact on inferred emissions, with 1 standard deviation (1<span class="inline-formula"><i>σ</i></span>) of RC indicating consistency. Although estimates show increased sensitivity to tested factors at finer scales, the system demonstrates notable robustness, especially for annual national total NO<span class="inline-formula"><sub><i>x</i></sub></span> and CO<span class="inline-formula"><sub>2</sub></span> emissions across most tests (RC <span class="inline-formula"><</span> 4.0 %). Spatiotemporally diverse changes in parameters tend to yield inconsistent impacts (1<span class="inline-formula"><i>σ</i></span> <span class="inline-formula">≥</span> 4 %) on estimates and vice versa (1<span class="inline-formula"><i>σ</i></span> <span class="inline-formula"><</span> 4 %). The model resolution, satellite constraint, and NO<span class="inline-formula"><sub><i>x</i></sub></span> emission factors emerge as the major influential factors, underscoring their priority for further optimization. Taking daily national total CO<span class="inline-formula"><sub>2</sub></span> emissions as an example, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mtext>RC</mtext><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="b2cd05ee42047bdc6dc921bdbf5ea2f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1949-2025-ie00001.svg" width="18pt" height="13pt" src="acp-25-1949-2025-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">±</span> 1<span class="inline-formula"><i>σ</i></span> they incur can reach <span class="inline-formula">−</span>1.2 <span class="inline-formula">±</span> 6.0 %, 1.3 <span class="inline-formula">±</span> 3.9 %, and 10.7 <span class="inline-formula">±</span> 0.7 %, respectively. This study reveals the robustness and areas for improvement in our air-pollution-satellite-based CO<span class="inline-formula"><sub>2</sub></span> emission inversion system, offering opportunities to enhance the reliability of CO<span class="inline-formula"><sub>2</sub></span> emission monitoring in the future.</p> |
|---|---|
| ISSN: | 1680-7316 1680-7324 |