Material Point Method-Based Simulation of Run-Out Characteristics for a Soil–Rock Mixed Landslide Induced by Surcharge

Surcharge loading on slopes is a prevalent engineering practice that can precipitate landslides, posing significant risks to construction integrity and safety. This study elucidates the impact of surcharge loading on mixed soil–rock slopes and benchmarks their response against that of pure soil slop...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi Zhang, Fan Zhang, Qingbo Yi, Guanzhu Jiang, Juncheng Xie
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2024/6255431
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surcharge loading on slopes is a prevalent engineering practice that can precipitate landslides, posing significant risks to construction integrity and safety. This study elucidates the impact of surcharge loading on mixed soil–rock slopes and benchmarks their response against that of pure soil slopes under analogous loading conditions. Investigating damage manifestations, this research quantifies the distribution of plastic zones, the morphological alterations of slopes at characteristic stages, the dynamics of slip velocity at monitoring points, and the extent of landslide run-out. The material point method is adopted for its proficiency in simulating large deformation scenarios. Two-dimensional models of a representative soil–rock mixed slope and a pure soil slope are meticulously crafted using digital image processing techniques. The distinct damage profiles exhibited by the mixed and pure soil slopes are compared. The comparative assessment elucidates the distinct damage patterns of different slopes, enhancing the understanding of their behavior under variable surcharge intensities and contributing to the discourse on slope stability assessments.
ISSN:1687-8094