Many Local Pattern Texture Features: Which Is Better for Image-Based Multilabel Human Protein Subcellular Localization Classification?

Human protein subcellular location prediction can provide critical knowledge for understanding a protein’s function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investig...

Full description

Saved in:
Bibliographic Details
Main Authors: Fan Yang, Ying-Ying Xu, Hong-Bin Shen
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/429049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human protein subcellular location prediction can provide critical knowledge for understanding a protein’s function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.
ISSN:2356-6140
1537-744X