A Bearing Fault Diagnosis Using a Support Vector Machine Optimised by the Self-Regulating Particle Swarm
In this paper, a novel model for fault detection of rolling bearing is proposed. It is based on a high-performance support vector machine (SVM) that is developed with a multifeature fusion and self-regulating particle swarm optimization (SRPSO). The fundamental of multikernel least square support ve...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2020/9096852 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, a novel model for fault detection of rolling bearing is proposed. It is based on a high-performance support vector machine (SVM) that is developed with a multifeature fusion and self-regulating particle swarm optimization (SRPSO). The fundamental of multikernel least square support vector machine (MK-LS-SVM) is overviewed to identify a classifier that allows multidimension features from empirical mode decomposition (EMD) to be fused with high generalization property. Then the multidimension parameters of the MK-LS-SVM are configured by the SRPSO for further performance improvement. Finally, the proposed model is evaluated through experiments and comparative studies. The results prove its effectiveness in detecting and classifying bearing faults. |
|---|---|
| ISSN: | 1070-9622 1875-9203 |