A Bearing Fault Diagnosis Using a Support Vector Machine Optimised by the Self-Regulating Particle Swarm

In this paper, a novel model for fault detection of rolling bearing is proposed. It is based on a high-performance support vector machine (SVM) that is developed with a multifeature fusion and self-regulating particle swarm optimization (SRPSO). The fundamental of multikernel least square support ve...

Full description

Saved in:
Bibliographic Details
Main Authors: Yerui Fan, Chao Zhang, Yu Xue, Jianguo Wang, Fengshou Gu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/9096852
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a novel model for fault detection of rolling bearing is proposed. It is based on a high-performance support vector machine (SVM) that is developed with a multifeature fusion and self-regulating particle swarm optimization (SRPSO). The fundamental of multikernel least square support vector machine (MK-LS-SVM) is overviewed to identify a classifier that allows multidimension features from empirical mode decomposition (EMD) to be fused with high generalization property. Then the multidimension parameters of the MK-LS-SVM are configured by the SRPSO for further performance improvement. Finally, the proposed model is evaluated through experiments and comparative studies. The results prove its effectiveness in detecting and classifying bearing faults.
ISSN:1070-9622
1875-9203