Thermoelectric Modeling and Online SOC Estimation of Li-Ion Battery for Plug-In Hybrid Electric Vehicles

The increasing oil price, energy demand, and environmental concern are leading to a global switch towards Plug-In Hybrid Electric Vehicles (PHEVs). In a PHEV, Li-ion battery is considered as the primary propelling source. Therefore, an accurate battery model is required to predict the I-V characteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Aishwarya Panday, Hari Om Bansal, Pramod Srinivasan
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2016/2353521
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increasing oil price, energy demand, and environmental concern are leading to a global switch towards Plug-In Hybrid Electric Vehicles (PHEVs). In a PHEV, Li-ion battery is considered as the primary propelling source. Therefore, an accurate battery model is required to predict the I-V characteristic and dynamic behavior of a battery. This paper presents a highly effective thermoelectric model of Li-ion battery developed in Simulink. An algorithm is proposed for estimation of state of charge (SOC) and open circuit voltage (OCV) adaptively to notify the exact SOC level for better utilization of battery power and optimal vehicle performance. Thermal behavior of Li-ion battery is investigated for wide temperature range and its effect on resistance, capacity, and OCV is recorded. The minimum SOC level to which battery can get depleted is calculated using gradient method. The proposed simulation results are analyzed with those of earlier models and found to be better.
ISSN:1687-5591
1687-5605