Normally Off AlGaN/GaN MIS-HEMTs with Self-Aligned p-GaN Gate and Non-Annealed Ohmic Contacts via Gate-First Fabrication
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizin...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/4/473 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching mask functions, enabling precise self-alignment. A highly selective Cl<sub>2</sub>/N<sub>2</sub>/O<sub>2</sub> inductively coupled plasma (ICP) etching process was optimized to etch the p-GaN layer in the access regions, with a selectivity ratio of 33:1 and minimal damage to the AlGaN barrier. Additionally, a novel, non-annealed ohmic contact formation technique was developed, leveraging ICP etching to create nitrogen vacancies that facilitate contact formation without requiring thermal annealing. This technique streamlines the process by combining ohmic contact formation and mesa isolation into a single lithographic step. Incorporating a SiNx gate dielectric layer led to a 4.5 V threshold voltage shift in the fabricated devices. The resulting devices exhibited improved electrical performance, including a wide gate voltage swing (>10 V), a high on/off current ratio (~10<sup>7</sup>), and clear pinch-off characteristics. These results demonstrate the effectiveness of the proposed fabrication approach, offering significant improvements in process efficiency and manufacturability. |
|---|---|
| ISSN: | 2072-666X |