Numerical Analysis for a Fractional Differential Time-Delay Model of HIV Infection of CD4+ T-Cell Proliferation under Antiretroviral Therapy
We study a fractional differential model of HIV infection of CD4+ T-cell, in which the CD4+ T-cell proliferation plays an important role in HIV infection under antiretroviral therapy. An appropriate method is given to ensure that both the equilibria are asymptotically stable for τ≥0. We calculate th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/291614 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a fractional differential model of HIV infection of CD4+ T-cell, in which the CD4+ T-cell proliferation plays an important role in HIV infection under antiretroviral therapy. An appropriate method is given to ensure that both the equilibria are asymptotically stable for τ≥0. We calculate the basic reproduction
number R0, the IFE E0, two IPEs E1* and E2*, and so on, and judge the stability of the equilibrium. In addition, we describe the dynamic behaviors of the fractional HIV model by using the Adams-type predictor-corrector method algorithm. At last, we extend the model to incorporate the term which we consider the loss of virion and a bilinear term during attacking the target cells. |
---|---|
ISSN: | 1085-3375 1687-0409 |