High-Precision Continuation of Periodic Orbits
Obtaining periodic orbits of dynamical systems is the main source of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be cor...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/716024 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832563464608940032 |
---|---|
author | Ángeles Dena Marcos Rodríguez Sergio Serrano Roberto Barrio |
author_facet | Ángeles Dena Marcos Rodríguez Sergio Serrano Roberto Barrio |
author_sort | Ángeles Dena |
collection | DOAJ |
description | Obtaining periodic orbits of dynamical systems is the main source
of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be corrected to get them with arbitrary precision. We illustrate the method with two important classical Hamiltonian problems. |
format | Article |
id | doaj-art-ed07bc71d8594be7aaafc30014ff60a9 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-ed07bc71d8594be7aaafc30014ff60a92025-02-03T01:20:14ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/716024716024High-Precision Continuation of Periodic OrbitsÁngeles Dena0Marcos Rodríguez1Sergio Serrano2Roberto Barrio3Centro Universitario de la Defensa and IUMA, 50090 Zaragoza, SpainCentro Universitario de la Defensa and IUMA, 50090 Zaragoza, SpainDepartamento de Matemática Aplicada and IUMA, Universidad de Zaragoza, 50009 Zaragoza, SpainDepartamento de Matemática Aplicada and IUMA, Universidad de Zaragoza, 50009 Zaragoza, SpainObtaining periodic orbits of dynamical systems is the main source of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be corrected to get them with arbitrary precision. We illustrate the method with two important classical Hamiltonian problems.http://dx.doi.org/10.1155/2012/716024 |
spellingShingle | Ángeles Dena Marcos Rodríguez Sergio Serrano Roberto Barrio High-Precision Continuation of Periodic Orbits Abstract and Applied Analysis |
title | High-Precision Continuation of Periodic Orbits |
title_full | High-Precision Continuation of Periodic Orbits |
title_fullStr | High-Precision Continuation of Periodic Orbits |
title_full_unstemmed | High-Precision Continuation of Periodic Orbits |
title_short | High-Precision Continuation of Periodic Orbits |
title_sort | high precision continuation of periodic orbits |
url | http://dx.doi.org/10.1155/2012/716024 |
work_keys_str_mv | AT angelesdena highprecisioncontinuationofperiodicorbits AT marcosrodriguez highprecisioncontinuationofperiodicorbits AT sergioserrano highprecisioncontinuationofperiodicorbits AT robertobarrio highprecisioncontinuationofperiodicorbits |