High-Precision Continuation of Periodic Orbits

Obtaining periodic orbits of dynamical systems is the main source of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be cor...

Full description

Saved in:
Bibliographic Details
Main Authors: Ángeles Dena, Marcos Rodríguez, Sergio Serrano, Roberto Barrio
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/716024
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563464608940032
author Ángeles Dena
Marcos Rodríguez
Sergio Serrano
Roberto Barrio
author_facet Ángeles Dena
Marcos Rodríguez
Sergio Serrano
Roberto Barrio
author_sort Ángeles Dena
collection DOAJ
description Obtaining periodic orbits of dynamical systems is the main source of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be corrected to get them with arbitrary precision. We illustrate the method with two important classical Hamiltonian problems.
format Article
id doaj-art-ed07bc71d8594be7aaafc30014ff60a9
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-ed07bc71d8594be7aaafc30014ff60a92025-02-03T01:20:14ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/716024716024High-Precision Continuation of Periodic OrbitsÁngeles Dena0Marcos Rodríguez1Sergio Serrano2Roberto Barrio3Centro Universitario de la Defensa and IUMA, 50090 Zaragoza, SpainCentro Universitario de la Defensa and IUMA, 50090 Zaragoza, SpainDepartamento de Matemática Aplicada and IUMA, Universidad de Zaragoza, 50009 Zaragoza, SpainDepartamento de Matemática Aplicada and IUMA, Universidad de Zaragoza, 50009 Zaragoza, SpainObtaining periodic orbits of dynamical systems is the main source of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be corrected to get them with arbitrary precision. We illustrate the method with two important classical Hamiltonian problems.http://dx.doi.org/10.1155/2012/716024
spellingShingle Ángeles Dena
Marcos Rodríguez
Sergio Serrano
Roberto Barrio
High-Precision Continuation of Periodic Orbits
Abstract and Applied Analysis
title High-Precision Continuation of Periodic Orbits
title_full High-Precision Continuation of Periodic Orbits
title_fullStr High-Precision Continuation of Periodic Orbits
title_full_unstemmed High-Precision Continuation of Periodic Orbits
title_short High-Precision Continuation of Periodic Orbits
title_sort high precision continuation of periodic orbits
url http://dx.doi.org/10.1155/2012/716024
work_keys_str_mv AT angelesdena highprecisioncontinuationofperiodicorbits
AT marcosrodriguez highprecisioncontinuationofperiodicorbits
AT sergioserrano highprecisioncontinuationofperiodicorbits
AT robertobarrio highprecisioncontinuationofperiodicorbits