Integral representation of vertical operators on the Bergman space over the upper half-plane

Let $\Pi $ denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space $\mathcal{A}^2(\Pi )$ over the upper half-plane can be uniquely represented as an integral operator of the form \begin{equation*} \left(S_\varphi f\right)(z) = \int _{\Pi } f(w) \varp...

Full description

Saved in:
Bibliographic Details
Main Authors: Bais, Shubham R., Venku Naidu, D., Mohan, Pinlodi
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.477/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206275354394624
author Bais, Shubham R.
Venku Naidu, D.
Mohan, Pinlodi
author_facet Bais, Shubham R.
Venku Naidu, D.
Mohan, Pinlodi
author_sort Bais, Shubham R.
collection DOAJ
description Let $\Pi $ denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space $\mathcal{A}^2(\Pi )$ over the upper half-plane can be uniquely represented as an integral operator of the form \begin{equation*} \left(S_\varphi f\right)(z) = \int _{\Pi } f(w) \varphi (z-\overline{w}) d\mu (w),~~\forall f\in \mathcal{A}^2(\Pi ),~z\in \Pi , \end{equation*} where $\varphi $ is an analytic function on $\Pi $ given by \begin{equation*} \varphi (z) = \int _{\mathbb{R}_+}\xi \sigma (\xi ) e^{iz\xi } d\xi , \ \forall z\in \Pi \end{equation*} for some $\sigma \in L^\infty (\mathbb{R}_+)$. Here $d\mu (w)$ is the Lebesgue measure on $\Pi $. Later on, with the help of above integral representation, we obtain various operator theoretic properties of the vertical operators.Also, we give integral representation of the form $S_\varphi $ for all the operators in the $C^\ast $-algebra generated by Toeplitz operators $T_{\mathbf{a}}$ with vertical symbols ${\mathbf{a}}\in L^\infty (\Pi )$.
format Article
id doaj-art-ecff1af3a67f42b7aa2e3db77607d5cc
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-ecff1af3a67f42b7aa2e3db77607d5cc2025-02-07T11:11:47ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101593160410.5802/crmath.47710.5802/crmath.477Integral representation of vertical operators on the Bergman space over the upper half-planeBais, Shubham R.0Venku Naidu, D.1Mohan, Pinlodi2Department of Mathematics, Indian Institute of Technology – Hyderabad, Kandi, Sangareddy, Telangana, India 502 284.Department of Mathematics, Indian Institute of Technology – Hyderabad, Kandi, Sangareddy, Telangana, India 502 284.Department of Mathematics, Indian Institute of Technology – Hyderabad, Kandi, Sangareddy, Telangana, India 502 284.Let $\Pi $ denote the upper half-plane. In this article, we prove that every vertical operator on the Bergman space $\mathcal{A}^2(\Pi )$ over the upper half-plane can be uniquely represented as an integral operator of the form \begin{equation*} \left(S_\varphi f\right)(z) = \int _{\Pi } f(w) \varphi (z-\overline{w}) d\mu (w),~~\forall f\in \mathcal{A}^2(\Pi ),~z\in \Pi , \end{equation*} where $\varphi $ is an analytic function on $\Pi $ given by \begin{equation*} \varphi (z) = \int _{\mathbb{R}_+}\xi \sigma (\xi ) e^{iz\xi } d\xi , \ \forall z\in \Pi \end{equation*} for some $\sigma \in L^\infty (\mathbb{R}_+)$. Here $d\mu (w)$ is the Lebesgue measure on $\Pi $. Later on, with the help of above integral representation, we obtain various operator theoretic properties of the vertical operators.Also, we give integral representation of the form $S_\varphi $ for all the operators in the $C^\ast $-algebra generated by Toeplitz operators $T_{\mathbf{a}}$ with vertical symbols ${\mathbf{a}}\in L^\infty (\Pi )$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.477/Bergman spacemultiplication operatorreducing subspaceToeplitz operator
spellingShingle Bais, Shubham R.
Venku Naidu, D.
Mohan, Pinlodi
Integral representation of vertical operators on the Bergman space over the upper half-plane
Comptes Rendus. Mathématique
Bergman space
multiplication operator
reducing subspace
Toeplitz operator
title Integral representation of vertical operators on the Bergman space over the upper half-plane
title_full Integral representation of vertical operators on the Bergman space over the upper half-plane
title_fullStr Integral representation of vertical operators on the Bergman space over the upper half-plane
title_full_unstemmed Integral representation of vertical operators on the Bergman space over the upper half-plane
title_short Integral representation of vertical operators on the Bergman space over the upper half-plane
title_sort integral representation of vertical operators on the bergman space over the upper half plane
topic Bergman space
multiplication operator
reducing subspace
Toeplitz operator
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.477/
work_keys_str_mv AT baisshubhamr integralrepresentationofverticaloperatorsonthebergmanspaceovertheupperhalfplane
AT venkunaidud integralrepresentationofverticaloperatorsonthebergmanspaceovertheupperhalfplane
AT mohanpinlodi integralrepresentationofverticaloperatorsonthebergmanspaceovertheupperhalfplane