A Two-Level Rule-Mining Approach to Classify Breast Cancer Patterns Using Adaptive Directed Mutation and Genetic Algorithm
Breast cancer represents a significant public health concern in both Western countries and Asia. Accurate and early detection is critical to improving long-term patient survival. For physicians to understand the classification and decision rules and to evaluate their results, it is preferable to use...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Eng |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4117/6/7/154 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Breast cancer represents a significant public health concern in both Western countries and Asia. Accurate and early detection is critical to improving long-term patient survival. For physicians to understand the classification and decision rules and to evaluate their results, it is preferable to use white box approaches to develop prediction models. This paper proposes a novel classification technique for extracting malignant prediction rules from training datasets containing numerical and binary nominal attributes. The classification technique introduced in this study facilitates the discovery of breast cancer patterns by integrating a real-coded genetic algorithm, an adaptive directed mutation operator, and a two-level malignant-rule-mining process. The experimental results, compared with existing rule-based methods from previous studies, demonstrate that the proposed approach generates simple and interpretable decision rules and effectively identifies patterns that lead to accurate breast cancer classification. |
|---|---|
| ISSN: | 2673-4117 |