Challenges with reinforcement learning model transportability for sepsis treatment in emergency care
Abstract Pivotal moments in sepsis care occur in the emergency department (ED), however, and it is unclear whether ED data is adequate to inform reinforcement learning (RL) models. We evaluated the early opportunity for the AI Clinician, a validated ICU-based RL-model, as a use case. Amongst emergen...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-025-01485-6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Pivotal moments in sepsis care occur in the emergency department (ED), however, and it is unclear whether ED data is adequate to inform reinforcement learning (RL) models. We evaluated the early opportunity for the AI Clinician, a validated ICU-based RL-model, as a use case. Amongst emergency sepsis patients, model parameters were often missing and invariably measured. Current iterations of RL-models trained on ICU data face challenges in emergency sepsis care. |
---|---|
ISSN: | 2398-6352 |