High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation

Abstract Double-atom catalysts (DACs) have opened distinctive paradigms in the field of rapidly developing atomic catalysis owing to their great potential for promoting catalytic performance in various reaction systems. However, increasing the loading and extending the service life of metal active c...

Full description

Saved in:
Bibliographic Details
Main Authors: Lili Zhang, Ning Zhang, Huishan Shang, Zhiyi Sun, Zihao Wei, Jingtao Wang, Yuanting Lei, Xiaochen Wang, Dan Wang, Yafei Zhao, Zhongti Sun, Fang Zhang, Xu Xiang, Bing Zhang, Wenxing Chen
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-53871-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Double-atom catalysts (DACs) have opened distinctive paradigms in the field of rapidly developing atomic catalysis owing to their great potential for promoting catalytic performance in various reaction systems. However, increasing the loading and extending the service life of metal active centres represents a considerable challenge for the efficient utilization of DACs. Here, we rationally design asymmetric nitrogen, sulfur-coordinated diatomic iron centres on highly defective nitrogen-doped carbon nanosheets (denoted A-Fe2S1N5/SNC, A: asymmetric), which possess the atomic configuration of the N2S1Fe-FeN3 moiety. The abundant defects and low-electronegativity heteroatoms in the carbon-based framework endow A-Fe2S1N5/SNC with a high loading of 6.72 wt%. Furthermore, A-Fe2S1N5/SNC has a low overpotential of 193 mV for the oxygen evolution reaction (OER) at 10 mA cm−2, outperforming commercial RuO2 catalysts. In addition, A-Fe2S1N5/SNC exhibits extraordinary stability, maintaining > 97% activity for over 2000 hours during the OER process. This work provides a practical scheme for simultaneously balancing the activity and stability of DACs towards electrocatalysis applications.
ISSN:2041-1723