Improving Daytime Planetary Boundary Layer Height Determination from CALIOP: Validation Based on Ground-Based Lidar Station

An integrated algorithm by combining the advantages of the wavelet covariance method and the improved maximum variance method was developed to determine the planetary boundary layer height (PBLH) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and an aerosol fraction...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao Liu, Augustin Mortier, Zhengqiang Li, Weizhen Hou, Philippe Goloub, Yang Lv, Xingfeng Chen, Donghui Li, Kaitao Li, Yisong Xie
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2017/5759074
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An integrated algorithm by combining the advantages of the wavelet covariance method and the improved maximum variance method was developed to determine the planetary boundary layer height (PBLH) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and an aerosol fraction threshold was applied to the integrated algorithm considering the applicability of the two methods. We compared the CALIOP retrieval with the measurements of PBLH derived from nine years of ground-based Lidar synchronous observations located in Lille, north of France. The results indicate that a good correlation (R≥0.79) exists between the PBLHs derived from CALIOP and ground-based Lidar under clear sky conditions. The mean absolute differences of PBLHs are, respectively, of 206 m and 106 m before and after the removal of the aloft aerosol layer. The results under cloudy sky conditions show a lower agreement (R=0.48) in regard of the comparisons performed under clear sky conditions. Besides, the spatial correlation of PBLHs decreases with the increasing spatial distance between CALIOP footprint and Lille observation platform. Based on the above analysis, the PBLHs can be effectively derived by the integrated algorithm under clear sky conditions, while larger mean absolute difference (i.e., 527 m) exists under cloudy sky conditions.
ISSN:1687-9309
1687-9317