On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>

The paper considers the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mpr...

Full description

Saved in:
Bibliographic Details
Main Authors: Roman Dmytryshyn, Volodymyra Oleksyn
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/11/759
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850149894534201344
author Roman Dmytryshyn
Volodymyra Oleksyn
author_facet Roman Dmytryshyn
Volodymyra Oleksyn
author_sort Roman Dmytryshyn
collection DOAJ
description The paper considers the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mprescripts></mprescripts><mn>3</mn><none></none></mmultiscripts><mo>,</mo></mrow></semantics></math></inline-formula> which is important in various fields of mathematics, physics, and economics. The method is used, according to which the domains of the analytical continuation of the special functions are the domains of convergence of their expansions into a special family of functions, namely branched continued fractions. These expansions have wide domains of convergence and better computational properties, particularly compared with series, making them effective tools for representing special functions. New domains of the analytical continuation of the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mprescripts></mprescripts><mn>3</mn><none></none></mmultiscripts></mrow></semantics></math></inline-formula> with real and complex parameters have been established. The paper also includes examples of the presentation and extension of some special functions.
format Article
id doaj-art-ec0b2a319d2b499387ed02c351ed4601
institution OA Journals
issn 2075-1680
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-ec0b2a319d2b499387ed02c351ed46012025-08-20T02:26:45ZengMDPI AGAxioms2075-16802024-10-01131175910.3390/axioms13110759On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>Roman Dmytryshyn0Volodymyra Oleksyn1Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, UkraineFaculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, UkraineThe paper considers the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mprescripts></mprescripts><mn>3</mn><none></none></mmultiscripts><mo>,</mo></mrow></semantics></math></inline-formula> which is important in various fields of mathematics, physics, and economics. The method is used, according to which the domains of the analytical continuation of the special functions are the domains of convergence of their expansions into a special family of functions, namely branched continued fractions. These expansions have wide domains of convergence and better computational properties, particularly compared with series, making them effective tools for representing special functions. New domains of the analytical continuation of the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mprescripts></mprescripts><mn>3</mn><none></none></mmultiscripts></mrow></semantics></math></inline-formula> with real and complex parameters have been established. The paper also includes examples of the presentation and extension of some special functions.https://www.mdpi.com/2075-1680/13/11/759generalized hypergeometric functionbranched continued fractionanalytical continuationconvergenceapproximation by rational functions
spellingShingle Roman Dmytryshyn
Volodymyra Oleksyn
On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>
Axioms
generalized hypergeometric function
branched continued fraction
analytical continuation
convergence
approximation by rational functions
title On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>
title_full On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>
title_fullStr On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>
title_full_unstemmed On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>
title_short On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>
title_sort on analytical extension of generalized hypergeometric function sub 3 sub i f i sub 2 sub
topic generalized hypergeometric function
branched continued fraction
analytical continuation
convergence
approximation by rational functions
url https://www.mdpi.com/2075-1680/13/11/759
work_keys_str_mv AT romandmytryshyn onanalyticalextensionofgeneralizedhypergeometricfunctionsub3subifisub2sub
AT volodymyraoleksyn onanalyticalextensionofgeneralizedhypergeometricfunctionsub3subifisub2sub