On Analytical Extension of Generalized Hypergeometric Function <sub>3</sub><i>F</i><sub>2</sub>

The paper considers the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mpr...

Full description

Saved in:
Bibliographic Details
Main Authors: Roman Dmytryshyn, Volodymyra Oleksyn
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/11/759
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper considers the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mprescripts></mprescripts><mn>3</mn><none></none></mmultiscripts><mo>,</mo></mrow></semantics></math></inline-formula> which is important in various fields of mathematics, physics, and economics. The method is used, according to which the domains of the analytical continuation of the special functions are the domains of convergence of their expansions into a special family of functions, namely branched continued fractions. These expansions have wide domains of convergence and better computational properties, particularly compared with series, making them effective tools for representing special functions. New domains of the analytical continuation of the generalized hypergeometric function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>F</mi><mn>2</mn><none></none><mprescripts></mprescripts><mn>3</mn><none></none></mmultiscripts></mrow></semantics></math></inline-formula> with real and complex parameters have been established. The paper also includes examples of the presentation and extension of some special functions.
ISSN:2075-1680