Red Supergiants as Supernova Progenitors

The inevitable fate of massive stars in the initial mass range of ≈8–<inline-formula><math display="inline"><semantics><mrow><mn>30</mn><mspace width="4pt"></mspace><msub><mi>M</mi><mo>⊙</mo></msub&g...

Full description

Saved in:
Bibliographic Details
Main Author: Schuyler D. Van Dyk
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Galaxies
Subjects:
Online Access:https://www.mdpi.com/2075-4434/13/2/33
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850143739967700992
author Schuyler D. Van Dyk
author_facet Schuyler D. Van Dyk
author_sort Schuyler D. Van Dyk
collection DOAJ
description The inevitable fate of massive stars in the initial mass range of ≈8–<inline-formula><math display="inline"><semantics><mrow><mn>30</mn><mspace width="4pt"></mspace><msub><mi>M</mi><mo>⊙</mo></msub></mrow></semantics></math></inline-formula> in the red supergiant (RSG) phase is a core-collapse supernova (SN) explosion, although some stars may collapse directly to a black hole. We know that this is the case, since RSGs have been directly identified and characterized for a number of supernovae (SNe) in pre-explosion archival optical and infrared images. RSGs likely all have some amount of circumstellar matter (CSM), through nominal mass loss, although evidence exists that some RSGs must experience enhanced mass loss during their lifetimes. The SNe from RSGs are hydrogen-rich Type II-Plateau (II-P), and SNe II-P at the low end of the luminosity range tend to arise from low-luminosity RSGs. The typical spectral energy distribution (SED) for such RSGs can generally be fit with a cool photospheric model, whereas the more luminous RSG progenitors of more luminous SNe II-P tend to require a greater quantity of dust in their CSM to account for their SEDs. The SN II-P progenitor luminosity range is <inline-formula><math display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><msub><mi>L</mi><mi>bol</mi></msub><mo>/</mo><msub><mi>L</mi><mo>⊙</mo></msub><mo>)</mo><mo>∼</mo><mn>4.0</mn></mrow></semantics></math></inline-formula>–5.2. The fact RSGs are known up to <inline-formula><math display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><msub><mi>L</mi><mi>bol</mi></msub><mo>/</mo><msub><mi>L</mi><mo>⊙</mo></msub><mo>)</mo><mo>∼</mo><mn>5.7</mn></mrow></semantics></math></inline-formula> leads to the so-called “RSG problem”, which may, in the end, be a result of small number of available statistics to date.
format Article
id doaj-art-eb8e5fd0f2ee4b889863aa8abe0bdcf3
institution OA Journals
issn 2075-4434
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Galaxies
spelling doaj-art-eb8e5fd0f2ee4b889863aa8abe0bdcf32025-08-20T02:28:36ZengMDPI AGGalaxies2075-44342025-04-011323310.3390/galaxies13020033Red Supergiants as Supernova ProgenitorsSchuyler D. Van Dyk0Caltech/IPAC, Mailcode 100-22, Pasadena, CA 91125, USAThe inevitable fate of massive stars in the initial mass range of ≈8–<inline-formula><math display="inline"><semantics><mrow><mn>30</mn><mspace width="4pt"></mspace><msub><mi>M</mi><mo>⊙</mo></msub></mrow></semantics></math></inline-formula> in the red supergiant (RSG) phase is a core-collapse supernova (SN) explosion, although some stars may collapse directly to a black hole. We know that this is the case, since RSGs have been directly identified and characterized for a number of supernovae (SNe) in pre-explosion archival optical and infrared images. RSGs likely all have some amount of circumstellar matter (CSM), through nominal mass loss, although evidence exists that some RSGs must experience enhanced mass loss during their lifetimes. The SNe from RSGs are hydrogen-rich Type II-Plateau (II-P), and SNe II-P at the low end of the luminosity range tend to arise from low-luminosity RSGs. The typical spectral energy distribution (SED) for such RSGs can generally be fit with a cool photospheric model, whereas the more luminous RSG progenitors of more luminous SNe II-P tend to require a greater quantity of dust in their CSM to account for their SEDs. The SN II-P progenitor luminosity range is <inline-formula><math display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><msub><mi>L</mi><mi>bol</mi></msub><mo>/</mo><msub><mi>L</mi><mo>⊙</mo></msub><mo>)</mo><mo>∼</mo><mn>4.0</mn></mrow></semantics></math></inline-formula>–5.2. The fact RSGs are known up to <inline-formula><math display="inline"><semantics><mrow><mo form="prefix">log</mo><mo>(</mo><msub><mi>L</mi><mi>bol</mi></msub><mo>/</mo><msub><mi>L</mi><mo>⊙</mo></msub><mo>)</mo><mo>∼</mo><mn>5.7</mn></mrow></semantics></math></inline-formula> leads to the so-called “RSG problem”, which may, in the end, be a result of small number of available statistics to date.https://www.mdpi.com/2075-4434/13/2/33red supergiantssupernovaecore-collapse supernovastellar evolutioncircumstellar matterastrophysics—solar and stellar astrophysics
spellingShingle Schuyler D. Van Dyk
Red Supergiants as Supernova Progenitors
Galaxies
red supergiants
supernovae
core-collapse supernova
stellar evolution
circumstellar matter
astrophysics—solar and stellar astrophysics
title Red Supergiants as Supernova Progenitors
title_full Red Supergiants as Supernova Progenitors
title_fullStr Red Supergiants as Supernova Progenitors
title_full_unstemmed Red Supergiants as Supernova Progenitors
title_short Red Supergiants as Supernova Progenitors
title_sort red supergiants as supernova progenitors
topic red supergiants
supernovae
core-collapse supernova
stellar evolution
circumstellar matter
astrophysics—solar and stellar astrophysics
url https://www.mdpi.com/2075-4434/13/2/33
work_keys_str_mv AT schuylerdvandyk redsupergiantsassupernovaprogenitors