An Intelligent Optimization Strategy Based on Deep Reinforcement Learning for Step Counting

With the popularity of Internet of things technology and intelligent devices, the application prospect of accurate step counting has gained more and more attention. To solve the problems that the existing algorithms use threshold to filter noise, and the parameters cannot be updated in time, an inte...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhoubao Sun, Pengfei Chen, Xiaodong Zhang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/9536309
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the popularity of Internet of things technology and intelligent devices, the application prospect of accurate step counting has gained more and more attention. To solve the problems that the existing algorithms use threshold to filter noise, and the parameters cannot be updated in time, an intelligent optimization strategy based on deep reinforcement learning is proposed. In this study, the counting problem is transformed into a serialization decision optimization. This study integrates the noise recognition and the user feedback to update parameters. The end-to-end processing is direct, which alleviates the inaccuracy of step counting in the follow-up step counting module caused by the inaccuracy of noise filtering in the two-stage processing and makes the model parameters continuously updated. Finally, the experimental results show that the proposed model achieves superior performance to existing approaches.
ISSN:1607-887X