Bootstrapping ground state correlators in matrix theory. Part I

Abstract The D0-brane/Banks-Fischler-Shenker-Susskind matrix theory is a strongly coupled quantum system with an interesting gravity dual. We develop a scheme to derive bootstrap bounds on simple correlators in the matrix theory at infinite N at zero energy by imposing the supercharge equations of m...

Full description

Saved in:
Bibliographic Details
Main Authors: Henry W. Lin, Zechuan Zheng
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2025)190
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The D0-brane/Banks-Fischler-Shenker-Susskind matrix theory is a strongly coupled quantum system with an interesting gravity dual. We develop a scheme to derive bootstrap bounds on simple correlators in the matrix theory at infinite N at zero energy by imposing the supercharge equations of motion. By exploiting SO(9) symmetry, we are able to consider single-trace operators involving words of length up to 9 using very modest computational resources. We interpret our initial results as strong evidence that the bootstrap method can efficiently access physics in the strongly coupled, infinite N regime.
ISSN:1029-8479