Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques

Electrochemical reduction mechanism of some salicylaldimine podands derived from salicylaldehyde and diamines having general formula of HO-C6H4-CH=N-R-N=CH-C6H4-OH [R = ‒, (CH2)6, (CH2CH2)2NH, (CH2CH2OCH2)2], namely N,N’-bis(salicylidene)-diamine (BSA), N,N’-bis(salicylidene)-1,6-hexanediamine (BSH...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Solak, A. İsbir-turan, A. Natsagdorj, S. Koçak, Z. Kılıç
Format: Article
Language:English
Published: Kyrgyz Turkish Manas University 2014-10-01
Series:MANAS: Journal of Engineering
Subjects:
Online Access:https://dergipark.org.tr/en/download/article-file/575933
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrochemical reduction mechanism of some salicylaldimine podands derived from salicylaldehyde and diamines having general formula of HO-C6H4-CH=N-R-N=CH-C6H4-OH [R = ‒, (CH2)6, (CH2CH2)2NH, (CH2CH2OCH2)2], namely N,N’-bis(salicylidene)-diamine (BSA), N,N’-bis(salicylidene)-1,6-hexanediamine (BSH), 1,7-bis(2-hydroxybenzyl)-1,4,7-triazaheptane (BST), 1,10-bis(2-hydroxybenzyl)-4,7-dioxa–1,10-diazadecane (BDD), respectively, were investigated by using various electrochemical techniques in 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) in acetonitrile (MeCN) at a glassy carbon (GC) electrode. Schiff base podand derivatives show cyclic voltammetric (CV) irreversible one-electron reduction peaks at about -1.82 V, -2.20 V, -2.14 V and -2.10 V at a scan rate of 0.1 V/s at GC electrode (vs. Ag/Ag ), respectively. The reaction mechanism was investigated by CV and decided to be electrochemical-chemical (EC) route and this mechanism was verified by digital simulation. The number of electrons transferred (n) and diffusion coefficients (D) of the compounds were determined using an ultramicroelectrode (UME) by CV, chronoamperometry (CA) and hydrodynamic voltammetry.
ISSN:1694-7398