On the group of automorphisms of Horikawa surfaces

Minimal algebraic surfaces of general type $X$ such that $K^2_X=2\chi (\mathcal{O}_X)-6$ are called Horikawa surfaces. In this note the group of automorphisms of Horikawa surfaces is studied. The main result states that given an admissible pair $(K^2, \chi )$ such that $K^2=2\chi -6$, every irreduci...

Full description

Saved in:
Bibliographic Details
Main Author: Lorenzo, Vicente
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.546/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206274614099968
author Lorenzo, Vicente
author_facet Lorenzo, Vicente
author_sort Lorenzo, Vicente
collection DOAJ
description Minimal algebraic surfaces of general type $X$ such that $K^2_X=2\chi (\mathcal{O}_X)-6$ are called Horikawa surfaces. In this note the group of automorphisms of Horikawa surfaces is studied. The main result states that given an admissible pair $(K^2, \chi )$ such that $K^2=2\chi -6$, every irreducible component of Gieseker’s moduli space $\mathfrak{M}_{K^2,\chi }$ contains an open subset consisting of surfaces with group of automorphisms isomorphic to $\mathbb{Z}_2$.
format Article
id doaj-art-eb2f62a6daae4966be1b7dce4ace2e76
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-eb2f62a6daae4966be1b7dce4ace2e762025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G323724410.5802/crmath.54610.5802/crmath.546On the group of automorphisms of Horikawa surfacesLorenzo, Vicente0https://orcid.org/0000-0003-2077-6095Telematic Engineering Department, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés (Madrid), Spain.Minimal algebraic surfaces of general type $X$ such that $K^2_X=2\chi (\mathcal{O}_X)-6$ are called Horikawa surfaces. In this note the group of automorphisms of Horikawa surfaces is studied. The main result states that given an admissible pair $(K^2, \chi )$ such that $K^2=2\chi -6$, every irreducible component of Gieseker’s moduli space $\mathfrak{M}_{K^2,\chi }$ contains an open subset consisting of surfaces with group of automorphisms isomorphic to $\mathbb{Z}_2$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.546/
spellingShingle Lorenzo, Vicente
On the group of automorphisms of Horikawa surfaces
Comptes Rendus. Mathématique
title On the group of automorphisms of Horikawa surfaces
title_full On the group of automorphisms of Horikawa surfaces
title_fullStr On the group of automorphisms of Horikawa surfaces
title_full_unstemmed On the group of automorphisms of Horikawa surfaces
title_short On the group of automorphisms of Horikawa surfaces
title_sort on the group of automorphisms of horikawa surfaces
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.546/
work_keys_str_mv AT lorenzovicente onthegroupofautomorphismsofhorikawasurfaces