Non-homogeneous BVPs for second-order symmetric Hamiltonian systems

By making use of Bolle’s method, we show that the following problem has infinitely many solutions: x¨+V′(x)=0,x(0)cosα−x˙(0)sinα=x0,x(1)cosβ−x˙(1)sinβ=x1,\begin{array}{rcl}\ddot{x}+{V}^{^{\prime} }\left(x)& =& 0,\\ x\left(0)\cos \alpha -\dot{x}\left(0)\sin \alpha & =& {x}_{0},\\ x\le...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen Yingying, Dong Yujun, Wang Baiqian
Format: Article
Language:English
Published: De Gruyter 2024-12-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2024-0112
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832570467839377408
author Chen Yingying
Dong Yujun
Wang Baiqian
author_facet Chen Yingying
Dong Yujun
Wang Baiqian
author_sort Chen Yingying
collection DOAJ
description By making use of Bolle’s method, we show that the following problem has infinitely many solutions: x¨+V′(x)=0,x(0)cosα−x˙(0)sinα=x0,x(1)cosβ−x˙(1)sinβ=x1,\begin{array}{rcl}\ddot{x}+{V}^{^{\prime} }\left(x)& =& 0,\\ x\left(0)\cos \alpha -\dot{x}\left(0)\sin \alpha & =& {x}_{0},\\ x\left(1)\cos \beta -\dot{x}\left(1)\sin \beta & =& {x}_{1},\end{array} where α,β∈(0,π)x0,x1∈Rn\alpha ,\beta \in \left(0,\pi ){x}_{0},{x}_{1}\in {{\rm{R}}}^{n} are given and V∈C2(Rn,R)V\in {C}^{2}\left({{\rm{R}}}^{n},{\rm{R}}) is even and is super-quadratic at infinity.
format Article
id doaj-art-eb13dd9e11734b39a65fe48cfe881ea6
institution Kabale University
issn 2391-5455
language English
publishDate 2024-12-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj-art-eb13dd9e11734b39a65fe48cfe881ea62025-02-02T15:46:01ZengDe GruyterOpen Mathematics2391-54552024-12-0122122924310.1515/math-2024-0112Non-homogeneous BVPs for second-order symmetric Hamiltonian systemsChen Yingying0Dong Yujun1Wang Baiqian2School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, P. R. ChinaDepartment of Mathematics, Nanjing Normal University, Nanjing, 210097, Jiangsu, P. R. ChinaDongguan No. 6 Senior High School, 523400, Dongguan, P. R. ChinaBy making use of Bolle’s method, we show that the following problem has infinitely many solutions: x¨+V′(x)=0,x(0)cosα−x˙(0)sinα=x0,x(1)cosβ−x˙(1)sinβ=x1,\begin{array}{rcl}\ddot{x}+{V}^{^{\prime} }\left(x)& =& 0,\\ x\left(0)\cos \alpha -\dot{x}\left(0)\sin \alpha & =& {x}_{0},\\ x\left(1)\cos \beta -\dot{x}\left(1)\sin \beta & =& {x}_{1},\end{array} where α,β∈(0,π)x0,x1∈Rn\alpha ,\beta \in \left(0,\pi ){x}_{0},{x}_{1}\in {{\rm{R}}}^{n} are given and V∈C2(Rn,R)V\in {C}^{2}\left({{\rm{R}}}^{n},{\rm{R}}) is even and is super-quadratic at infinity.https://doi.org/10.1515/math-2024-0112sturm-liouvillehamiltonian systemnon-symmetric34b1534b2434l11
spellingShingle Chen Yingying
Dong Yujun
Wang Baiqian
Non-homogeneous BVPs for second-order symmetric Hamiltonian systems
Open Mathematics
sturm-liouville
hamiltonian system
non-symmetric
34b15
34b24
34l11
title Non-homogeneous BVPs for second-order symmetric Hamiltonian systems
title_full Non-homogeneous BVPs for second-order symmetric Hamiltonian systems
title_fullStr Non-homogeneous BVPs for second-order symmetric Hamiltonian systems
title_full_unstemmed Non-homogeneous BVPs for second-order symmetric Hamiltonian systems
title_short Non-homogeneous BVPs for second-order symmetric Hamiltonian systems
title_sort non homogeneous bvps for second order symmetric hamiltonian systems
topic sturm-liouville
hamiltonian system
non-symmetric
34b15
34b24
34l11
url https://doi.org/10.1515/math-2024-0112
work_keys_str_mv AT chenyingying nonhomogeneousbvpsforsecondordersymmetrichamiltoniansystems
AT dongyujun nonhomogeneousbvpsforsecondordersymmetrichamiltoniansystems
AT wangbaiqian nonhomogeneousbvpsforsecondordersymmetrichamiltoniansystems