Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management
Soil erosion is a critical factor impacting soil health and agricultural productivity, with soil erodibility often quantified using the K-factor in erosion models such as the universal soil loss equation (USLE). Traditional K-factor estimation lacks spatiotemporal precision, particularly under varyi...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Land |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-445X/14/3/657 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Soil erosion is a critical factor impacting soil health and agricultural productivity, with soil erodibility often quantified using the K-factor in erosion models such as the universal soil loss equation (USLE). Traditional K-factor estimation lacks spatiotemporal precision, particularly under varying soil moisture and land cover conditions. This study introduces modified K-factor pedotransfer functions (Kmlr) integrating dynamic remotely sensed data on land use land cover to enhance K-factor accuracy for diverse soil health management applications. The Kmlr functions from multiple approaches, including dynamic crop and cover management factor (Cdynamic), high resolution satellite data, and downscaled remotely sensed data, were evaluated across spatial and temporal scales within the Fish River watershed in Alabama, a coastal watershed with significant soil–water interactions. The results highlighted that the Kmlr model provided more accurate sediment yield (SY) predictions, particularly in agricultural areas, where traditional models overestimated erosion by upto 59.23 ton/ha. SY analysis across the 36 hydrological response units (HRUs) in the watershed showed that the Kmlr model captured more accurate soil loss estimates, especially in regions with varying land use. The modified K-factor model (Kmlr-c) using Cdynamic and high-resolution soil surface moisture data outperformed the traditional USLE K-factors in predicting SY, with a strong correlation to observed SY data (R² = 0.980 versus R² = 0.911). The total sediment yield predicted by Kmlr-c (525.11 ton/ha) was notably lower than that of USLE-based estimates (828.62 ton/ha), highlighting the overestimation in conventional models. The identification of erosive hotspots revealed that 6003 ha of land was at high erosion risk (K-factor > 0.25), with an average soil loss of 24.2 ton/ha. The categorization of erosive hotspots highlighted critical areas at high risk for erosion, underscoring the need for targeted soil conservation practices. This research underscores the improvement of remotely sensed data-based models and perfects them for the application of soil erodibility assessments thus promoting the development of such models. |
|---|---|
| ISSN: | 2073-445X |