The MYC/TXNIP axis mediates NCL-Suppressed CD8+T cell immune response in lung adenocarcinoma
Abstract Background Lung adenocarcinoma is a deadly malignancy with immune evasion playing a key role in tumor progression. Glucose metabolism is crucial for T cell function, and the nucleolar protein NCL may influence T cell glucose metabolism. This study aims to investigate NCL’s role in T cell gl...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-05-01
|
| Series: | Molecular Medicine |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s10020-025-01224-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background Lung adenocarcinoma is a deadly malignancy with immune evasion playing a key role in tumor progression. Glucose metabolism is crucial for T cell function, and the nucleolar protein NCL may influence T cell glucose metabolism. This study aims to investigate NCL’s role in T cell glucose metabolism and immune evasion by lung adenocarcinoma cells. Methods Utilizing single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), we analyzed cell clustering, annotation, and prognosis. In vitro experiments involved manipulating NCL expression in CD8+ T cells to study immune function and glucose metabolism. In vivo studies using an orthotopic transplant mouse model monitored NCL’s impact on CD8+ T cell glucose metabolism and anti-tumor immune function. Results NCL was associated with T cell dysfunction and glucose metabolism. NCL silencing enhanced CD8+ T cell glucose metabolism, cytotoxicity, and infiltration, while NCL overexpression had the opposite effect. NCL overexpression relieved MYC-mediated transcriptional repression of TXNIP, reducing CD8+ T cell glucose metabolism. In vivo, NCL inhibited CD8+ T cell glucose metabolism through the MYC/TXNIP axis, hindering anti-tumor immune function. Conclusions NCL overexpression suppresses CD8+ T cell glucose metabolism and anti-tumor immune function, promoting lung adenocarcinoma progression via the MYC/TXNIP axis. |
|---|---|
| ISSN: | 1528-3658 |