Advancements in 3D printing technologies for personalized treatment of osteonecrosis of the femoral head
Three-dimensional (3D) printing technology has shown significant promise in the medical field, particularly in orthopedics, prosthetics, tissue engineering, and pharmaceutical preparations. This review focuses on the innovative application of 3D printing in addressing the challenges of osteonecrosis...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-04-01
|
Series: | Materials Today Bio |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590006425000894 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three-dimensional (3D) printing technology has shown significant promise in the medical field, particularly in orthopedics, prosthetics, tissue engineering, and pharmaceutical preparations. This review focuses on the innovative application of 3D printing in addressing the challenges of osteonecrosis of the femoral head (ONFH). Unlike traditional hip replacement surgery, which is often suboptimal for younger patients, 3D printing offers precise localization of necrotic areas and the ability to create personalized implants. By integrating advanced biomaterials, this technology offers a promising strategy approach for early hip-preserving treatments. Additionally, 3D-printed bone tissue engineering scaffolds can mimic the natural bone environment, promoting bone regeneration and vascularization. In the future, the potential of 3D printing extends to combining with artificial intelligence for optimizing treatment plans, developing materials with enhanced bioactivity and compatibility, and translating these innovations from the laboratory to clinical practice. This review demonstrates how 3D printing technology uniquely addresses critical challenges in ONFH treatment, including insufficient vascularization, poor mechanical stability, and limited long-term success of conventional therapies. By introducing gradient porous scaffolds, bioactive material coatings, and AI-assisted design, this work outlines novel strategies to improve bone regeneration and personalized hip-preserving interventions. These advancements not only enhance treatment efficacy but also pave the way for translating laboratory findings into clinical applications. |
---|---|
ISSN: | 2590-0064 |