Model Updating of Spindle Systems Based on the Identification of Joint Dynamics

In order to simulate the cutting performance of a spindle mounted in the machine tool, the finite element (FE) model of spindles is required to be coupled with machine tool. However, the unknown joint dynamics (e.g., bolts) between the spindle and machine tool column limit the accuracy of the model....

Full description

Saved in:
Bibliographic Details
Main Authors: Hongrui Cao, Songtao Xi, Wei Cheng
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2015/894307
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to simulate the cutting performance of a spindle mounted in the machine tool, the finite element (FE) model of spindles is required to be coupled with machine tool. However, the unknown joint dynamics (e.g., bolts) between the spindle and machine tool column limit the accuracy of the model. In this paper, an FE model updating method is proposed based on the identification of joint dynamics in both translational and rotational degrees-of-freedom (DOF). The receptance coupling (RC) technique is enhanced to estimate frequency response functions (FRFs) corresponding to rotational DOFs. The joint stiffness is identified through the iteration process by minimizing the difference between the simulated FRF and the measured FRF of the assembly. The proposed method is verified with a machine-tool spindle system. The good agreement between simulation and experiment shows the effectiveness of the method.
ISSN:1070-9622
1875-9203