The Embedding Theorem of an L0-Prebarreled Module into Its Random Biconjugate Space
We first prove Mazur’s lemma in a random locally convex module endowed with the locally L0-convex topology. Then, we establish the embedding theorem of an L0-prebarreled random locally convex module, which says that if (S,P) is an L0-prebarreled random locally convex module such that S has the count...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2017/8520797 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We first prove Mazur’s lemma in a random locally convex module endowed with the locally L0-convex topology. Then, we establish the embedding theorem of an L0-prebarreled random locally convex module, which says that if (S,P) is an L0-prebarreled random locally convex module such that S has the countable concatenation property, then the canonical embedding mapping J of S onto J(S)⊂(Ss⁎)s⁎ is an L0-linear homeomorphism, where (Ss⁎)s⁎ is the strong random biconjugate space of S under the locally L0-convex topology. |
---|---|
ISSN: | 2314-8896 2314-8888 |