Optimality Conditions and Stability Analysis for the Second-Order Cone Constrained Variational Inequalities
In this paper, we study the optimality conditions and perform a stability analysis for the second-order cone constrained variational inequalities (SOCCVI) problem. The Lagrange function and Karush–Kuhn–Tucker (KKT) condition of the SOCCVI problem is given, and the optimality conditions for the SOCCV...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/5/342 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we study the optimality conditions and perform a stability analysis for the second-order cone constrained variational inequalities (SOCCVI) problem. The Lagrange function and Karush–Kuhn–Tucker (KKT) condition of the SOCCVI problem is given, and the optimality conditions for the SOCCVI problem are studied. Then, the second-order sufficient condition satisfying the constrained nondegenerate condition is proved. The strong second-order sufficient condition is defined. And the nonsingularity of Clarke’s generalized Jacobian of the KKT point, the strong regularity of the KKT point, the uniform second-order growth condition, the strong stability of the KKT point, and the local Lipschtiz homeomorphism of the KKT point for the SOCCVI problem are proved to be equivalent to each other. Then, the stability theorem of the SOCCVI problem is obtained. |
|---|---|
| ISSN: | 2075-1680 |