Effects of Calcination Temperatures on Photocatalytic Activity of Ordered Titanate Nanoribbon/SnO2 Films Fabricated during an EPD Process
Ordered titanate nanoribbon (TNR)/SnO2 films were fabricated by electrophoretic deposition (EPD) process using hydrothermally prepared titanate nanoribbon as a precursor. The formation mechanism of ordered TNR film on the fluorine-doped SnO2 coated (FTO) glass was investigated by scanning electron m...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2012/472958 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ordered titanate nanoribbon (TNR)/SnO2 films were fabricated by electrophoretic deposition (EPD) process using hydrothermally prepared titanate nanoribbon as a precursor. The formation mechanism of ordered TNR film on the fluorine-doped SnO2 coated (FTO) glass was investigated by scanning electron microscopy (SEM). The effects of calcination temperatures on the phase structure and photocatalytic activity of ordered TNR/SnO2 films were investigated and discussed. The X-ray diffraction (XRD) results indicate that the phase transformation of titanate to anatase occurs at 400°C and with increasing calcination temperature, the crystallization of anatase increases. At 600°C, the nanoribbon morphology still hold and the TiO2/SnO2 film exhibits the highest photocatalytic activity due to the good crystallization, unique morphology, and efficient photogenerated charge carriers separation and transfer at the interface of TiO2 and SnO2. |
---|---|
ISSN: | 1110-662X 1687-529X |