Renewable Electricity in German Multi-Family Buildings: Unlocking the Photovoltaic Potential for Small-Scale Landlord-to-Tenant Power Supply

The implementation of photovoltaic and home storage systems in multi-family houses (MFHs) in Germany lags significantly behind their development in single-family houses. The Landlord-to-Tenant (L2T) power supply model is meant to reduce this gap, yet few projects have been implemented to date. In th...

Full description

Saved in:
Bibliographic Details
Main Authors: Mauricio Celi Cortés, Jonas van Ouwerkerk, Jingyu Gong, Jan Figgener, Christian Bußar, Dirk Uwe Sauer
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/5/1213
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The implementation of photovoltaic and home storage systems in multi-family houses (MFHs) in Germany lags significantly behind their development in single-family houses. The Landlord-to-Tenant (L2T) power supply model is meant to reduce this gap, yet few projects have been implemented to date. In this model, the landlord must fulfill the tenants’ power demand through a combination of photovoltaic generation and storage and electricity from the grid, for which the landlord pays an auxiliary electricity price that greatly influences the financial viability of a project. Our contribution focuses on the impact of electricity price variations and recent policy changes on the financial viability of small-scale L2T concepts. We considered component investment costs, building sizes, photovoltaic yields, and future developments. Recent policy changes have improved the financial viability of L2T projects, increasing the maximal auxiliary electricity price for which an investment is viable by 13 ct/kWh for a four-party MFH. Minimal auxiliary electricity prices justifying the installation of home storage systems (HSSs) decreased by 9 ct/kWh from 2020 to 2023. Autarky rates are substantially different across the considered scenarios, with the autarky rate being defined as the percentage of consumption of self-generated energy relative to the total energy consumption. For a 22-party MFH the autarky rate decreases by 17% compared to a 4-party MFH. HSSs have the potential to increase autarky rates while maintaining the financial viability of L2T projects.
ISSN:1996-1073