On close-to-pseudoconvex Dirichlet series

For a Dirichlet series of form $F(s)=\exp\{s\lambda_1\}+\sum\nolimits_{k=2}^{+\infty}f_k\exp\{s\lambda_k\}$ absolutely convergent in the half-plane $\Pi_0=\{s\colon \mathop{\rm Re}s<0\}$ new sufficient conditions for the close-to-pseudoconvexity are found and the obtained result is applied to stu...

Full description

Saved in:
Bibliographic Details
Main Authors: O. M. Mulyava, M. M. Sheremeta, M.G. Medvediev
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2024-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/514
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849429461006548992
author O. M. Mulyava
M. M. Sheremeta
M.G. Medvediev
author_facet O. M. Mulyava
M. M. Sheremeta
M.G. Medvediev
author_sort O. M. Mulyava
collection DOAJ
description For a Dirichlet series of form $F(s)=\exp\{s\lambda_1\}+\sum\nolimits_{k=2}^{+\infty}f_k\exp\{s\lambda_k\}$ absolutely convergent in the half-plane $\Pi_0=\{s\colon \mathop{\rm Re}s<0\}$ new sufficient conditions for the close-to-pseudoconvexity are found and the obtained result is applied to studying of solutions linear differential equations of second order with exponential coefficients. In particular, are proved the following statements: 1) Let $\lambda_k=\lambda_{k-1}+\lambda_1$ and $f_k>0$ for all $k\ge 2$. If $1\le\lambda_2f_2/\lambda_1\le 2$ and $\lambda_kf_k-\lambda_{k+1}f_{k+1}\searrow q\ge 0$ as $k\to+\infty$ then function of form {\bf(1)} is close-to-pseudoconvex in $\Pi_0$ (Theorem 3). This theorem complements Alexander's criterion obtained for power series. 2) If either $-h^2\le\gamma\le0$ or $\gamma=h^2$ then differential equation $(1-e^{hs})^2w''-h(1-e^{2hs})w'+\gamma e^{2hs}=0$ $(h>0, \gamma\in{\mathbb R})$ has a solution $w=F$ of form {\bf(1)} with the exponents $\lambda_k=kh$ and the the abscissa of absolute convergence $\sigma_a=0$ that is close-to-pseudoconvex in $\Pi_0$ (Theorem 4).
format Article
id doaj-art-e954c2907c7d46b78d1132ac63a43e3d
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2024-06-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-e954c2907c7d46b78d1132ac63a43e3d2025-08-20T03:28:21ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202024-06-0161221421810.30970/ms.61.2.214-218514On close-to-pseudoconvex Dirichlet seriesO. M. Mulyava0M. M. Sheremeta1M.G. Medvediev2Kyiv National University of Food TechnologiesIvan Franko National University of Lviv, Lviv, UkraineV.I. Vernadsky Taurida National UniversityFor a Dirichlet series of form $F(s)=\exp\{s\lambda_1\}+\sum\nolimits_{k=2}^{+\infty}f_k\exp\{s\lambda_k\}$ absolutely convergent in the half-plane $\Pi_0=\{s\colon \mathop{\rm Re}s<0\}$ new sufficient conditions for the close-to-pseudoconvexity are found and the obtained result is applied to studying of solutions linear differential equations of second order with exponential coefficients. In particular, are proved the following statements: 1) Let $\lambda_k=\lambda_{k-1}+\lambda_1$ and $f_k>0$ for all $k\ge 2$. If $1\le\lambda_2f_2/\lambda_1\le 2$ and $\lambda_kf_k-\lambda_{k+1}f_{k+1}\searrow q\ge 0$ as $k\to+\infty$ then function of form {\bf(1)} is close-to-pseudoconvex in $\Pi_0$ (Theorem 3). This theorem complements Alexander's criterion obtained for power series. 2) If either $-h^2\le\gamma\le0$ or $\gamma=h^2$ then differential equation $(1-e^{hs})^2w''-h(1-e^{2hs})w'+\gamma e^{2hs}=0$ $(h>0, \gamma\in{\mathbb R})$ has a solution $w=F$ of form {\bf(1)} with the exponents $\lambda_k=kh$ and the the abscissa of absolute convergence $\sigma_a=0$ that is close-to-pseudoconvex in $\Pi_0$ (Theorem 4).http://matstud.org.ua/ojs/index.php/matstud/article/view/514dirichlet serieslose-to-pseudoconvexitydifferential equation
spellingShingle O. M. Mulyava
M. M. Sheremeta
M.G. Medvediev
On close-to-pseudoconvex Dirichlet series
Математичні Студії
dirichlet series
lose-to-pseudoconvexity
differential equation
title On close-to-pseudoconvex Dirichlet series
title_full On close-to-pseudoconvex Dirichlet series
title_fullStr On close-to-pseudoconvex Dirichlet series
title_full_unstemmed On close-to-pseudoconvex Dirichlet series
title_short On close-to-pseudoconvex Dirichlet series
title_sort on close to pseudoconvex dirichlet series
topic dirichlet series
lose-to-pseudoconvexity
differential equation
url http://matstud.org.ua/ojs/index.php/matstud/article/view/514
work_keys_str_mv AT ommulyava onclosetopseudoconvexdirichletseries
AT mmsheremeta onclosetopseudoconvexdirichletseries
AT mgmedvediev onclosetopseudoconvexdirichletseries