Early Detection of Inter-Turn Short Circuits in Induction Motors Using the Derivative of Stator Current and a Lightweight 1D-ResNet

This work presents a lightweight and practical methodology for detecting inter-turn short-circuit faults in squirrel-cage induction motors under different mechanical load conditions. The proposed approach utilizes a one-dimensional convolutional neural network (1D-CNN) enhanced with residual blocks...

Full description

Saved in:
Bibliographic Details
Main Authors: Carlos Javier Morales-Perez, David Camarena-Martinez, Juan Pablo Amezquita-Sanchez, Jose de Jesus Rangel-Magdaleno, Edwards Ernesto Sánchez Ramírez, Martin Valtierra-Rodriguez
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Computation
Subjects:
Online Access:https://www.mdpi.com/2079-3197/13/6/140
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents a lightweight and practical methodology for detecting inter-turn short-circuit faults in squirrel-cage induction motors under different mechanical load conditions. The proposed approach utilizes a one-dimensional convolutional neural network (1D-CNN) enhanced with residual blocks and trained on differentiated stator current signals obtained under different load mechanical conditions. This preprocessing step enhances fault-related features, enabling improved learning while maintaining the simplicity of a lightweight CNN. The model achieved classification accuracies above 99.16% across all folds in five-fold cross-validation and demonstrated the ability to detect faults involving as few as three short-circuited turns. Comparative experiments with the Multi-Scale 1D-ResNet demonstrate that the proposed method achieves similar or superior performance while significantly reducing training time. These results highlight the model’s suitability for real-time fault detection in embedded and resource-constrained industrial environments.
ISSN:2079-3197