Biosynthesis of Silver Nanoparticles: A Green Approach to Photocatalysis

Silver nanoparticles (AgNPs) have become indispensable due to their wide range of applications across various industries, particularly in enhancing human health and environmental sustainability. Recently, the use of biological sources for AgNP synthesis has gained significant attention, as it minimi...

Full description

Saved in:
Bibliographic Details
Main Authors: Sivasankari Marimuthu, Sankar Malayandi, Karthikeyan Rajendran
Format: Article
Language:English
Published: Journal of Pure and Applied Microbiology 2025-06-01
Series:Journal of Pure and Applied Microbiology
Subjects:
Online Access:https://microbiologyjournal.org/biosynthesis-of-silver-nanoparticles-a-green-approach-to-photocatalysis/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silver nanoparticles (AgNPs) have become indispensable due to their wide range of applications across various industries, particularly in enhancing human health and environmental sustainability. Recently, the use of biological sources for AgNP synthesis has gained significant attention, as it minimizes adverse effects on animals, plants, humans, and the environment. This study focuses on the biosynthesis of AgNPs using the culture supernatant of Bacillus sp. EPS003, a soil isolate. The UV-visible spectrum of the biosynthesized nanoparticles revealed a surface plasmon resonance peak at 420 nm, confirming the formation of AgNPs. Functional groups were identified through Fourier transform infrared (FTIR) spectroscopy analysis. The synthesized AgNPs had an estimated size of 71.34 nm, and their stability was confirmed using zeta potential measurements. Furthermore, the biosynthesized AgNPs exhibited excellent dye degradation potential. They demonstrated maximum catalytic activity within a few minutes of incubation against eosin yellow and methyl orange dyes, achieving decolorization efficiencies of up to 62.3% and 73.4%, respectively. These biosynthesized AgNPs may be useful in bioremediation applications, helping to mitigate environmental stress caused by the release of toxic dye-rich industrial effluents.
ISSN:0973-7510
2581-690X