Smart Irrigation Technologies and Prospects for Enhancing Water Use Efficiency for Sustainable Agriculture
Rapid population growth, rising food demand, and climate change have created significant challenges to meet the water demands for agriculture. Effective irrigation water management is essential to address the world’s water crisis. The transition from conventional, frequently ineffective gravity-driv...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | AgriEngineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2624-7402/7/4/106 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Rapid population growth, rising food demand, and climate change have created significant challenges to meet the water demands for agriculture. Effective irrigation water management is essential to address the world’s water crisis. The transition from conventional, frequently ineffective gravity-driven irrigations to contemporary, pressure-driven precision irrigation methods are explored in this article, addressing the difficulties associated with water-intensive irrigation, the possibility of updating conventional techniques, and the developments in smart and precision irrigation technologies. This study comprehensively analyses published literature of 150 articles from the year 2005 to 2024, based on titles, abstract, and conclusions that contain keywords such as precision irrigation scheduling, water-saving technologies, and smart irrigation systems, in addition to providing potential solutions to achieve sustainable development goals and smart agricultural production systems. Moreover, it explores the fundamentals and processes of smart irrigation, such as open- and closed-loop control, precision monitoring and control systems, and smart monitoring methods based on soil data, plant water status, weather data, remote sensing, and participatory irrigation management. Likewise, to emphasize the potential of these technologies for a more sustainable agricultural future, several smart techniques, including IoT, wireless sensor networks, deep learning, and fuzzy logic, and their effects on crop performance and water conservation across various crops are discussed. The review concludes by summarizing the limitations and challenges of implementing precision irrigation systems and AI in agriculture along with highlighting the relationship of adopting precision irrigation and ultimately achieving various sustainable development goals (SDGs). |
|---|---|
| ISSN: | 2624-7402 |