Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales

In this paper, we study a general second-order m-point boundary value problem for nonlinear singular dynamic equation on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+λq(t)f(t,u(t))=0, t∈(0,1)𝕋, u(ρ(0))=0, u(σ(1))=∑i=1m-2αiu(ηi). This paper shows the existence of multiple positive solutions if f...

Full description

Saved in:
Bibliographic Details
Main Authors: Chengjun Yuan, Yongming Liu
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2010/261741
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552675425648640
author Chengjun Yuan
Yongming Liu
author_facet Chengjun Yuan
Yongming Liu
author_sort Chengjun Yuan
collection DOAJ
description In this paper, we study a general second-order m-point boundary value problem for nonlinear singular dynamic equation on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+λq(t)f(t,u(t))=0, t∈(0,1)𝕋, u(ρ(0))=0, u(σ(1))=∑i=1m-2αiu(ηi). This paper shows the existence of multiple positive solutions if f is semipositone and superlinear. The arguments are based upon fixed-point theorems in a cone.
format Article
id doaj-art-e8d10dc5f1c54e09869cc5506639b837
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-e8d10dc5f1c54e09869cc5506639b8372025-02-03T05:58:14ZengWileyAbstract and Applied Analysis1085-33751687-04092010-01-01201010.1155/2010/261741261741Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time ScalesChengjun Yuan0Yongming Liu1Department of Mathematics, East China Normal University, Shanghai 200241, ChinaDepartment of Mathematics, East China Normal University, Shanghai 200241, ChinaIn this paper, we study a general second-order m-point boundary value problem for nonlinear singular dynamic equation on time scales uΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+λq(t)f(t,u(t))=0, t∈(0,1)𝕋, u(ρ(0))=0, u(σ(1))=∑i=1m-2αiu(ηi). This paper shows the existence of multiple positive solutions if f is semipositone and superlinear. The arguments are based upon fixed-point theorems in a cone.http://dx.doi.org/10.1155/2010/261741
spellingShingle Chengjun Yuan
Yongming Liu
Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
Abstract and Applied Analysis
title Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
title_full Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
title_fullStr Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
title_full_unstemmed Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
title_short Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
title_sort multiple positive solutions of a second order nonlinear semipositone m point boundary value problem on time scales
url http://dx.doi.org/10.1155/2010/261741
work_keys_str_mv AT chengjunyuan multiplepositivesolutionsofasecondordernonlinearsemipositonempointboundaryvalueproblemontimescales
AT yongmingliu multiplepositivesolutionsofasecondordernonlinearsemipositonempointboundaryvalueproblemontimescales