Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2

Abstract Conventional optical elements are bulky and limited to specific functionalities, contradicting the increasing demand of miniaturization and multi-functionalities. Optical metasurfaces enable tailoring light-matter interaction at will, especially important for the infrared spectral range whi...

Full description

Saved in:
Bibliographic Details
Main Authors: Lukas Conrads, Florian Bontke, Andreas Mathwieser, Paul Buske, Matthias Wuttig, Robert Schmitt, Carlo Holly, Thomas Taubner
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-59122-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849699609265307648
author Lukas Conrads
Florian Bontke
Andreas Mathwieser
Paul Buske
Matthias Wuttig
Robert Schmitt
Carlo Holly
Thomas Taubner
author_facet Lukas Conrads
Florian Bontke
Andreas Mathwieser
Paul Buske
Matthias Wuttig
Robert Schmitt
Carlo Holly
Thomas Taubner
author_sort Lukas Conrads
collection DOAJ
description Abstract Conventional optical elements are bulky and limited to specific functionalities, contradicting the increasing demand of miniaturization and multi-functionalities. Optical metasurfaces enable tailoring light-matter interaction at will, especially important for the infrared spectral range which lacks commercially available beam-shaping elements. While the fabrication of those metasurfaces usually requires cumbersome techniques, direct laser writing promises a simple and convenient alternative. Here, we exploit the non-volatile laser-induced insulator-to-metal transition of the plasmonic phase-change material In3SbTe2 (IST) for optical programming of large-area metasurfaces for infrared beam-shaping. We tailor the geometric phase of metasurfaces with rotated crystalline IST rod antennas to achieve beam steering, lensing, and beams carrying orbital angular momenta. Finally, we investigate multi-functional and cascaded metasurfaces exploiting enlarged holography, and design a single metasurface creating two different holograms along the optical axis. Our approach facilitates fabrication of large-area metasurfaces within hours, enabling rapid-prototyping of customized infrared meta-optics for sensing, imaging and quantum information.
format Article
id doaj-art-e8b37f3b8a214abe8cfca9f0d564eb25
institution DOAJ
issn 2041-1723
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-e8b37f3b8a214abe8cfca9f0d564eb252025-08-20T03:18:32ZengNature PortfolioNature Communications2041-17232025-04-011611910.1038/s41467-025-59122-5Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2Lukas Conrads0Florian Bontke1Andreas Mathwieser2Paul Buske3Matthias Wuttig4Robert Schmitt5Carlo Holly6Thomas Taubner7Institute of Physics (IA), RWTH Aachen UniversityInstitute of Physics (IA), RWTH Aachen UniversityFraunhofer Institute for Production Technology IPTChair for Technology of Optical Systems, RWTH Aachen UniversityInstitute of Physics (IA), RWTH Aachen UniversityFraunhofer Institute for Production Technology IPTChair for Technology of Optical Systems, RWTH Aachen UniversityInstitute of Physics (IA), RWTH Aachen UniversityAbstract Conventional optical elements are bulky and limited to specific functionalities, contradicting the increasing demand of miniaturization and multi-functionalities. Optical metasurfaces enable tailoring light-matter interaction at will, especially important for the infrared spectral range which lacks commercially available beam-shaping elements. While the fabrication of those metasurfaces usually requires cumbersome techniques, direct laser writing promises a simple and convenient alternative. Here, we exploit the non-volatile laser-induced insulator-to-metal transition of the plasmonic phase-change material In3SbTe2 (IST) for optical programming of large-area metasurfaces for infrared beam-shaping. We tailor the geometric phase of metasurfaces with rotated crystalline IST rod antennas to achieve beam steering, lensing, and beams carrying orbital angular momenta. Finally, we investigate multi-functional and cascaded metasurfaces exploiting enlarged holography, and design a single metasurface creating two different holograms along the optical axis. Our approach facilitates fabrication of large-area metasurfaces within hours, enabling rapid-prototyping of customized infrared meta-optics for sensing, imaging and quantum information.https://doi.org/10.1038/s41467-025-59122-5
spellingShingle Lukas Conrads
Florian Bontke
Andreas Mathwieser
Paul Buske
Matthias Wuttig
Robert Schmitt
Carlo Holly
Thomas Taubner
Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2
Nature Communications
title Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2
title_full Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2
title_fullStr Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2
title_full_unstemmed Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2
title_short Infrared beam-shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase-change material In3SbTe2
title_sort infrared beam shaping on demand via tailored geometric phase metasurfaces employing the plasmonic phase change material in3sbte2
url https://doi.org/10.1038/s41467-025-59122-5
work_keys_str_mv AT lukasconrads infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT florianbontke infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT andreasmathwieser infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT paulbuske infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT matthiaswuttig infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT robertschmitt infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT carloholly infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2
AT thomastaubner infraredbeamshapingondemandviatailoredgeometricphasemetasurfacesemployingtheplasmonicphasechangematerialin3sbte2