New Extended Quantitative Local and Global Regularity Index for Single- and Multiframe RC Bridges Based on Modal Vector Correlation

Seismic demand and performance of bridges are highly dependent upon the level of irregularity. Although previous studies have proposed methodologies so as to quantify the irregularity of the bridges in terms of global regularity index, it still remains unclear how to determine the distribution of ir...

Full description

Saved in:
Bibliographic Details
Main Authors: Elham Aboutorabian, Morteza Raissi Dehkordi
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6860335
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Seismic demand and performance of bridges are highly dependent upon the level of irregularity. Although previous studies have proposed methodologies so as to quantify the irregularity of the bridges in terms of global regularity index, it still remains unclear how to determine the distribution of irregularity along a bridge, as well as to discover the irregularity sources. This research project is intended to develop a quantitative vector regularity criterion for single- and multiframe bridges based on the modified correlation function for spatial locations of scaled mode shapes of deck-alone and whole bridge. The proposed criterion calculates two types of regularity indices, namely, local (LRI) and global regularity indices (GRI). The GRI is a scalar value representing the overall regularity of the entire bridge, whereas the LRI highlights vector irregularity distribution along the bridge. Since the deck discontinuity due to the in-span hinges is one of the leading causes for irregularity, the proposed index has been employed in case of multiframe bridges as well. Furthermore, the current study aims to investigate the correlation between the proposed irregularity indicators and the nonlinear to linear demand ratio. Therefore, the appropriate analysis method can be chosen based on irregularity extent of bridges. Obtained results of the proposed indices reveal that in-span hinge is one of the main parameters affecting the distribution of local irregularity along a bridge. Therefore, multiframe bridges need to be investigated in detail so as to validate the special design requirements recommended by design codes.
ISSN:1070-9622
1875-9203