The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis

<b>Background:</b> MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We cond...

Full description

Saved in:
Bibliographic Details
Main Authors: David Luengo Gómez, Marta García Cerezo, David López Cornejo, Ángela Salmerón Ruiz, Encarnación González-Flores, Consolación Melguizo Alonso, Antonio Jesús Láinez Ramos-Bossini, José Prados, Francisco Gabriel Ortega Sánchez
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/7/786
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850078216190951424
author David Luengo Gómez
Marta García Cerezo
David López Cornejo
Ángela Salmerón Ruiz
Encarnación González-Flores
Consolación Melguizo Alonso
Antonio Jesús Láinez Ramos-Bossini
José Prados
Francisco Gabriel Ortega Sánchez
author_facet David Luengo Gómez
Marta García Cerezo
David López Cornejo
Ángela Salmerón Ruiz
Encarnación González-Flores
Consolación Melguizo Alonso
Antonio Jesús Láinez Ramos-Bossini
José Prados
Francisco Gabriel Ortega Sánchez
author_sort David Luengo Gómez
collection DOAJ
description <b>Background:</b> MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We conducted a systematic review and meta-analysis to synthesize the diagnostic performance of MRI-based radiomics models for predicting pathological nodal status (pN) in RC. <b>Methods:</b> A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published until 31 December 2024. Eligible studies applied MRI-based radiomics for pN prediction in RC patients. We excluded other imaging sources and models combining radiomics and other data (e.g., clinical). All models with available outcome metrics were included in data analysis. Data extraction and quality assessment (QUADAS-2) were performed independently by two reviewers. Random-effects meta-analyses including hierarchical summary receiver operating characteristic (HSROC) and restricted maximum likelihood estimator (REML) analyses were conducted to pool sensitivity, specificity, area under the curve (AUC), and diagnostic odds ratios (DORs). Sensitivity analyses and publication bias evaluation were also performed. <b>Results:</b> Sixteen studies (<i>n</i> = 3157 patients) were included. The HSROC showed pooled sensitivity, specificity, and AUC values of 0.68 (95% CI, 0.63–0.72), 0.73 (95% CI, 0.68–0.78), and 0.70 (95% CI, 0.65–0.75), respectively. The mean pooled AUC and DOR obtained by REML were 0.78 (95% CI, 0.75–0.80) and 6.03 (95% CI, 4.65–7.82). Funnel plot asymmetry and Egger’s test (<i>p</i> = 0.025) indicated potential publication bias. <b>Conclusions:</b> Overall, MRI-based radiomics models demonstrated moderate accuracy in predicting pN status in RC, with some studies reporting outstanding results. However, heterogeneity in relevant methodological approaches such as the source of MRI sequences or machine learning methods applied along with possible publication bias call for further standardization and preclude their translation to clinical practice.
format Article
id doaj-art-e890d78ef81844d1bfbaeb60745f7627
institution DOAJ
issn 2306-5354
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Bioengineering
spelling doaj-art-e890d78ef81844d1bfbaeb60745f76272025-08-20T02:45:37ZengMDPI AGBioengineering2306-53542025-07-0112778610.3390/bioengineering12070786The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-AnalysisDavid Luengo Gómez0Marta García Cerezo1David López Cornejo2Ángela Salmerón Ruiz3Encarnación González-Flores4Consolación Melguizo Alonso5Antonio Jesús Láinez Ramos-Bossini6José Prados7Francisco Gabriel Ortega Sánchez8Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainDepartment of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, SpainInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain<b>Background:</b> MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We conducted a systematic review and meta-analysis to synthesize the diagnostic performance of MRI-based radiomics models for predicting pathological nodal status (pN) in RC. <b>Methods:</b> A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published until 31 December 2024. Eligible studies applied MRI-based radiomics for pN prediction in RC patients. We excluded other imaging sources and models combining radiomics and other data (e.g., clinical). All models with available outcome metrics were included in data analysis. Data extraction and quality assessment (QUADAS-2) were performed independently by two reviewers. Random-effects meta-analyses including hierarchical summary receiver operating characteristic (HSROC) and restricted maximum likelihood estimator (REML) analyses were conducted to pool sensitivity, specificity, area under the curve (AUC), and diagnostic odds ratios (DORs). Sensitivity analyses and publication bias evaluation were also performed. <b>Results:</b> Sixteen studies (<i>n</i> = 3157 patients) were included. The HSROC showed pooled sensitivity, specificity, and AUC values of 0.68 (95% CI, 0.63–0.72), 0.73 (95% CI, 0.68–0.78), and 0.70 (95% CI, 0.65–0.75), respectively. The mean pooled AUC and DOR obtained by REML were 0.78 (95% CI, 0.75–0.80) and 6.03 (95% CI, 4.65–7.82). Funnel plot asymmetry and Egger’s test (<i>p</i> = 0.025) indicated potential publication bias. <b>Conclusions:</b> Overall, MRI-based radiomics models demonstrated moderate accuracy in predicting pN status in RC, with some studies reporting outstanding results. However, heterogeneity in relevant methodological approaches such as the source of MRI sequences or machine learning methods applied along with possible publication bias call for further standardization and preclude their translation to clinical practice.https://www.mdpi.com/2306-5354/12/7/786radiomicsmagnetic resonance imaginglymph nodestagingprecisionmachine learning
spellingShingle David Luengo Gómez
Marta García Cerezo
David López Cornejo
Ángela Salmerón Ruiz
Encarnación González-Flores
Consolación Melguizo Alonso
Antonio Jesús Láinez Ramos-Bossini
José Prados
Francisco Gabriel Ortega Sánchez
The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
Bioengineering
radiomics
magnetic resonance imaging
lymph node
staging
precision
machine learning
title The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
title_full The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
title_fullStr The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
title_full_unstemmed The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
title_short The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
title_sort value of mri based radiomics in predicting the pathological nodal status of rectal cancer a systematic review and meta analysis
topic radiomics
magnetic resonance imaging
lymph node
staging
precision
machine learning
url https://www.mdpi.com/2306-5354/12/7/786
work_keys_str_mv AT davidluengogomez thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT martagarciacerezo thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT davidlopezcornejo thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT angelasalmeronruiz thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT encarnaciongonzalezflores thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT consolacionmelguizoalonso thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT antoniojesuslainezramosbossini thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT joseprados thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT franciscogabrielortegasanchez thevalueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT davidluengogomez valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT martagarciacerezo valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT davidlopezcornejo valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT angelasalmeronruiz valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT encarnaciongonzalezflores valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT consolacionmelguizoalonso valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT antoniojesuslainezramosbossini valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT joseprados valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis
AT franciscogabrielortegasanchez valueofmribasedradiomicsinpredictingthepathologicalnodalstatusofrectalcancerasystematicreviewandmetaanalysis