Macrophage-specific PHGDH protects against MAFLD by suppressing TAK1
Summary: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a progressive disease with only one approved treatment currently available. Hepatic phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the serine biosynthesis pathway, regulates MAFLD development. However, the...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-03-01
|
| Series: | Cell Reports |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124725001974 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a progressive disease with only one approved treatment currently available. Hepatic phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the serine biosynthesis pathway, regulates MAFLD development. However, the role of macrophage PHGDH in MAFLD progression remains unclear. Here, we demonstrate that the lipotoxicity inducer palmitic acid (PA) significantly increases macrophage PHGDH expression and that PHGDH deficiency in macrophages promotes PA-induced inflammatory responses. Myeloid-specific PHGDH deficiency exacerbates MAFLD in mice. Mechanistically, tetrameric PHGDH binds to transforming growth factor-β-activated kinase 1 (TAK1) to inhibit its interaction with TAK1 binding protein 1 (TAB1), sequentially suppressing the activation of TAK1 and downstream NF-κB and MAPK signaling. Inhibition of TAK1 activation slows the development of metabolic dysfunction-associated steatohepatitis (MASH) caused by myeloid PHGDH knockout. Importantly, adeno-associated virus-mediated PHGDH overexpression in liver macrophages alleviates MAFLD in mice. Collectively, these results identify macrophage PHGDH as a promising therapeutic agent for MAFLD. |
|---|---|
| ISSN: | 2211-1247 |