Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils

<p>Past nuclear weapons testing (NWT) and nuclear power plant (NPP) accidents have resulted in the ubiquitous deposition of radionuclides in the environment. These fallout radionuclides (FRNs) are considered the privileged markers (“golden spikes”) of the Anthropocene stratigraphic layers. The...

Full description

Saved in:
Bibliographic Details
Main Authors: G. Dicen, F. Guillevic, S. Gupta, P.-A. Chaboche, K. Meusburger, P. Sabatier, O. Evrard, C. Alewell
Format: Article
Language:English
Published: Copernicus Publications 2025-04-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/17/1529/2025/essd-17-1529-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850199938921660416
author G. Dicen
G. Dicen
F. Guillevic
S. Gupta
P.-A. Chaboche
P.-A. Chaboche
P.-A. Chaboche
K. Meusburger
P. Sabatier
O. Evrard
C. Alewell
author_facet G. Dicen
G. Dicen
F. Guillevic
S. Gupta
P.-A. Chaboche
P.-A. Chaboche
P.-A. Chaboche
K. Meusburger
P. Sabatier
O. Evrard
C. Alewell
author_sort G. Dicen
collection DOAJ
description <p>Past nuclear weapons testing (NWT) and nuclear power plant (NPP) accidents have resulted in the ubiquitous deposition of radionuclides in the environment. These fallout radionuclides (FRNs) are considered the privileged markers (“golden spikes”) of the Anthropocene stratigraphic layers. Their deposition in the 1950s coincided with the “Great Acceleration”, which is characterized by large-scale shifts in the Earth's systems, including increased land-use change and soil degradation. Among the FRNs deposited globally, <span class="inline-formula"><sup>137</sup></span>Cs has been the most commonly used to assess soil erosion and/or the chronology of sediment deposition, while <span class="inline-formula"><sup>239+240</sup></span>Pu is an alternative soil erosion tracer and chronological marker that has been increasingly used due to a number of advantages.</p> <p>We compiled <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu data published from undisturbed (so-called “reference”) soils in the equatorial and Southern Hemisphere regions to build a database within the framework of the AVATAR (A reVised dATing framework for quantifying geomorphological processes during the Anthropocene) project. Using this database, named the AVATAR-Soils Database, we determined the distribution of <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu inventories in equatorial and Southern Hemisphere soils, along with the relative contributions of different fallout nuclear weapon sources by analyzing their isotopic ratios. Additionally, we demonstrated how the database can be used to identify the environmental factors that influence the distribution of <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu in reference soils by applying a machine learning algorithm.</p> <p><span id="page1530"/>Our meta-analysis revealed that high <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu inventories were recorded near the Equator and within the 20–40° S latitudinal bands, which coincide with the location of multiple NWT locations. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mn mathvariant="normal">240</mn></msup><mi mathvariant="normal">Pu</mi><msup><mo>/</mo><mn mathvariant="normal">239</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5950337f7b24e3e03dcbf942e0731479"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-1529-2025-ie00001.svg" width="49pt" height="15pt" src="essd-17-1529-2025-ie00001.png"/></svg:svg></span></span>Pu atomic ratios suggest that sources other than the global fallout (primarily from US and USSR weapon testing with a <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mn mathvariant="normal">240</mn></msup><mi mathvariant="normal">Pu</mi><msup><mo>/</mo><mn mathvariant="normal">239</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="24a2a2260fda9d0f6a6b1949e9b9f688"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-1529-2025-ie00002.svg" width="49pt" height="15pt" src="essd-17-1529-2025-ie00002.png"/></svg:svg></span></span>Pu atomic ratio of <span class="inline-formula">∼</span> 0.18) contributed to the reference inventories in the Southern Hemisphere. These additional sources have been relatively neglected so far. Based on the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mn mathvariant="normal">240</mn></msup><mi mathvariant="normal">Pu</mi><msup><mo>/</mo><mn mathvariant="normal">239</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="93c8539375e3521959fef8f1321f497f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-1529-2025-ie00003.svg" width="49pt" height="15pt" src="essd-17-1529-2025-ie00003.png"/></svg:svg></span></span>Pu atomic ratios, we have estimated that the French fallout contributed <span class="inline-formula">∼</span> 20 % to the reference soil <span class="inline-formula"><sup>239+240</sup></span>Pu inventories in South America and up to 70 % in French Polynesia. In contrast, the British fallout contributed <span class="inline-formula">∼</span> 27 % to the reference soil <span class="inline-formula"><sup>239+240</sup></span>Pu inventories in the rest of Oceania. Our machine learning algorithm identified the precipitation of the coldest quarter, longitude, and latitude as the strongest predictors of the <span class="inline-formula"><sup>137</sup></span>Cs inventory. For the <span class="inline-formula"><sup>239+240</sup></span>Pu inventory, the mean diurnal temperature range, the annual temperature range, and the precipitation of the driest quarter were the strongest predictors. Altogether, these findings demonstrate the potential of the AVATAR-Soils Database as a resource for improving our understanding of the distribution and sources of <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu in equatorial and Southern Hemisphere soils and refining their application as tools in various Earth science research. The AVATAR-Soils Database may be accessed at <a href="https://doi.org/10.5281/zenodo.14008221">https://doi.org/10.5281/zenodo.14008221</a> (Dicen et al., 2024).</p>
format Article
id doaj-art-e836716df9ad43cd8e07871e88508f00
institution OA Journals
issn 1866-3508
1866-3516
language English
publishDate 2025-04-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj-art-e836716df9ad43cd8e07871e88508f002025-08-20T02:12:29ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162025-04-01171529154910.5194/essd-17-1529-2025Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soilsG. Dicen0G. Dicen1F. Guillevic2S. Gupta3P.-A. Chaboche4P.-A. Chaboche5P.-A. Chaboche6K. Meusburger7P. Sabatier8O. Evrard9C. Alewell10Environmental Geosciences, Department of Environmental Science, University of Basel, 4056 Basel, SwitzerlandDepartment of Science and Technology – Philippine Nuclear Research Institute (DOST-PNRI), Commonwealth Avenue, Diliman, 1101 Quezon City, PhilippinesEnvironmental Geosciences, Department of Environmental Science, University of Basel, 4056 Basel, SwitzerlandEnvironmental Geosciences, Department of Environmental Science, University of Basel, 4056 Basel, SwitzerlandJapan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, JapanInstitute of Environmental Radioactivity, Fukushima University, Kanayagawa, Fukushima, JapanLaboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceSwiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Zurich, SwitzerlandLaboratoire Environnements, Dynamiques et Territoires de Montagne (EDYTEM), CNRS, Université Savoie Mont Blanc, 73376 Le Bourget-du-Lac, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceEnvironmental Geosciences, Department of Environmental Science, University of Basel, 4056 Basel, Switzerland<p>Past nuclear weapons testing (NWT) and nuclear power plant (NPP) accidents have resulted in the ubiquitous deposition of radionuclides in the environment. These fallout radionuclides (FRNs) are considered the privileged markers (“golden spikes”) of the Anthropocene stratigraphic layers. Their deposition in the 1950s coincided with the “Great Acceleration”, which is characterized by large-scale shifts in the Earth's systems, including increased land-use change and soil degradation. Among the FRNs deposited globally, <span class="inline-formula"><sup>137</sup></span>Cs has been the most commonly used to assess soil erosion and/or the chronology of sediment deposition, while <span class="inline-formula"><sup>239+240</sup></span>Pu is an alternative soil erosion tracer and chronological marker that has been increasingly used due to a number of advantages.</p> <p>We compiled <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu data published from undisturbed (so-called “reference”) soils in the equatorial and Southern Hemisphere regions to build a database within the framework of the AVATAR (A reVised dATing framework for quantifying geomorphological processes during the Anthropocene) project. Using this database, named the AVATAR-Soils Database, we determined the distribution of <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu inventories in equatorial and Southern Hemisphere soils, along with the relative contributions of different fallout nuclear weapon sources by analyzing their isotopic ratios. Additionally, we demonstrated how the database can be used to identify the environmental factors that influence the distribution of <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu in reference soils by applying a machine learning algorithm.</p> <p><span id="page1530"/>Our meta-analysis revealed that high <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu inventories were recorded near the Equator and within the 20–40° S latitudinal bands, which coincide with the location of multiple NWT locations. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mn mathvariant="normal">240</mn></msup><mi mathvariant="normal">Pu</mi><msup><mo>/</mo><mn mathvariant="normal">239</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5950337f7b24e3e03dcbf942e0731479"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-1529-2025-ie00001.svg" width="49pt" height="15pt" src="essd-17-1529-2025-ie00001.png"/></svg:svg></span></span>Pu atomic ratios suggest that sources other than the global fallout (primarily from US and USSR weapon testing with a <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mn mathvariant="normal">240</mn></msup><mi mathvariant="normal">Pu</mi><msup><mo>/</mo><mn mathvariant="normal">239</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="24a2a2260fda9d0f6a6b1949e9b9f688"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-1529-2025-ie00002.svg" width="49pt" height="15pt" src="essd-17-1529-2025-ie00002.png"/></svg:svg></span></span>Pu atomic ratio of <span class="inline-formula">∼</span> 0.18) contributed to the reference inventories in the Southern Hemisphere. These additional sources have been relatively neglected so far. Based on the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mn mathvariant="normal">240</mn></msup><mi mathvariant="normal">Pu</mi><msup><mo>/</mo><mn mathvariant="normal">239</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="93c8539375e3521959fef8f1321f497f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-1529-2025-ie00003.svg" width="49pt" height="15pt" src="essd-17-1529-2025-ie00003.png"/></svg:svg></span></span>Pu atomic ratios, we have estimated that the French fallout contributed <span class="inline-formula">∼</span> 20 % to the reference soil <span class="inline-formula"><sup>239+240</sup></span>Pu inventories in South America and up to 70 % in French Polynesia. In contrast, the British fallout contributed <span class="inline-formula">∼</span> 27 % to the reference soil <span class="inline-formula"><sup>239+240</sup></span>Pu inventories in the rest of Oceania. Our machine learning algorithm identified the precipitation of the coldest quarter, longitude, and latitude as the strongest predictors of the <span class="inline-formula"><sup>137</sup></span>Cs inventory. For the <span class="inline-formula"><sup>239+240</sup></span>Pu inventory, the mean diurnal temperature range, the annual temperature range, and the precipitation of the driest quarter were the strongest predictors. Altogether, these findings demonstrate the potential of the AVATAR-Soils Database as a resource for improving our understanding of the distribution and sources of <span class="inline-formula"><sup>137</sup></span>Cs and <span class="inline-formula"><sup>239+240</sup></span>Pu in equatorial and Southern Hemisphere soils and refining their application as tools in various Earth science research. The AVATAR-Soils Database may be accessed at <a href="https://doi.org/10.5281/zenodo.14008221">https://doi.org/10.5281/zenodo.14008221</a> (Dicen et al., 2024).</p>https://essd.copernicus.org/articles/17/1529/2025/essd-17-1529-2025.pdf
spellingShingle G. Dicen
G. Dicen
F. Guillevic
S. Gupta
P.-A. Chaboche
P.-A. Chaboche
P.-A. Chaboche
K. Meusburger
P. Sabatier
O. Evrard
C. Alewell
Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils
Earth System Science Data
title Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils
title_full Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils
title_fullStr Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils
title_full_unstemmed Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils
title_short Distribution and sources of fallout <sup>137</sup>Cs and <sup>239+240</sup>Pu in equatorial and Southern Hemisphere reference soils
title_sort distribution and sources of fallout sup 137 sup cs and sup 239 240 sup pu in equatorial and southern hemisphere reference soils
url https://essd.copernicus.org/articles/17/1529/2025/essd-17-1529-2025.pdf
work_keys_str_mv AT gdicen distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT gdicen distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT fguillevic distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT sgupta distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT pachaboche distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT pachaboche distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT pachaboche distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT kmeusburger distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT psabatier distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT oevrard distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils
AT calewell distributionandsourcesoffalloutsup137supcsandsup239240suppuinequatorialandsouthernhemispherereferencesoils