Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions

This paper investigates the existence and uniqueness of solutions to a class of sequential fractional differential equations and inclusions involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><...

Full description

Saved in:
Bibliographic Details
Main Authors: Furkan Erkan, Nuket Aykut Hamal, Sotiris K. Ntouyas, Jessada Tariboon
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/437
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850077902656241664
author Furkan Erkan
Nuket Aykut Hamal
Sotiris K. Ntouyas
Jessada Tariboon
author_facet Furkan Erkan
Nuket Aykut Hamal
Sotiris K. Ntouyas
Jessada Tariboon
author_sort Furkan Erkan
collection DOAJ
description This paper investigates the existence and uniqueness of solutions to a class of sequential fractional differential equations and inclusions involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>,</mo><mi>ψ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Hilfer and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>,</mo><mi>ψ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Caputo derivatives under non-separated boundary conditions. By reformulating the problems into equivalent fixed-point systems, several classical fixed-point theorems, including those of Banach, Krasnosel’ski<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi mathvariant="normal">i</mi><mo>˘</mo></mover></semantics></math></inline-formula>’s, Schaefer, and the Leray–Schauder alternative, are employed to derive rigorous results. The study is further extended to the multi-valued setting, where existence results are established for both convex- and nonconvex-valued multi-functions using appropriate fixed-point techniques. Numerical examples are provided to illustrate the applicability and effectiveness of the theoretical findings.
format Article
id doaj-art-e7f4c6657f7849d19a3e0da152b1c1cb
institution DOAJ
issn 2504-3110
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-e7f4c6657f7849d19a3e0da152b1c1cb2025-08-20T02:45:42ZengMDPI AGFractal and Fractional2504-31102025-07-019743710.3390/fractalfract9070437Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary ConditionsFurkan Erkan0Nuket Aykut Hamal1Sotiris K. Ntouyas2Jessada Tariboon3Department of Mathematics, Ege University, Bornova 35100, Izmir, TürkiyeDepartment of Mathematics, Ege University, Bornova 35100, Izmir, TürkiyeDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, GreeceIntelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandThis paper investigates the existence and uniqueness of solutions to a class of sequential fractional differential equations and inclusions involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>,</mo><mi>ψ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Hilfer and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>,</mo><mi>ψ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-Caputo derivatives under non-separated boundary conditions. By reformulating the problems into equivalent fixed-point systems, several classical fixed-point theorems, including those of Banach, Krasnosel’ski<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi mathvariant="normal">i</mi><mo>˘</mo></mover></semantics></math></inline-formula>’s, Schaefer, and the Leray–Schauder alternative, are employed to derive rigorous results. The study is further extended to the multi-valued setting, where existence results are established for both convex- and nonconvex-valued multi-functions using appropriate fixed-point techniques. Numerical examples are provided to illustrate the applicability and effectiveness of the theoretical findings.https://www.mdpi.com/2504-3110/9/7/437(<i>k</i>, <i>ψ</i>)-Hilfer fractional derivative(<i>k</i>, <i>ψ</i>)-Caputo fractional derivativefractional differential equationfractional differential inclusionexistenceuniqueness
spellingShingle Furkan Erkan
Nuket Aykut Hamal
Sotiris K. Ntouyas
Jessada Tariboon
Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
Fractal and Fractional
(<i>k</i>, <i>ψ</i>)-Hilfer fractional derivative
(<i>k</i>, <i>ψ</i>)-Caputo fractional derivative
fractional differential equation
fractional differential inclusion
existence
uniqueness
title Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
title_full Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
title_fullStr Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
title_full_unstemmed Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
title_short Existence and Uniqueness Analysis for (<i>k</i>, <i>ψ</i>)-Hilfer and (<i>k</i>, <i>ψ</i>)-Caputo Sequential Fractional Differential Equations and Inclusions with Non-Separated Boundary Conditions
title_sort existence and uniqueness analysis for i k i i ψ i hilfer and i k i i ψ i caputo sequential fractional differential equations and inclusions with non separated boundary conditions
topic (<i>k</i>, <i>ψ</i>)-Hilfer fractional derivative
(<i>k</i>, <i>ψ</i>)-Caputo fractional derivative
fractional differential equation
fractional differential inclusion
existence
uniqueness
url https://www.mdpi.com/2504-3110/9/7/437
work_keys_str_mv AT furkanerkan existenceanduniquenessanalysisforikiipsihilferandikiipsicaputosequentialfractionaldifferentialequationsandinclusionswithnonseparatedboundaryconditions
AT nuketaykuthamal existenceanduniquenessanalysisforikiipsihilferandikiipsicaputosequentialfractionaldifferentialequationsandinclusionswithnonseparatedboundaryconditions
AT sotiriskntouyas existenceanduniquenessanalysisforikiipsihilferandikiipsicaputosequentialfractionaldifferentialequationsandinclusionswithnonseparatedboundaryconditions
AT jessadatariboon existenceanduniquenessanalysisforikiipsihilferandikiipsicaputosequentialfractionaldifferentialequationsandinclusionswithnonseparatedboundaryconditions