Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet

Mugil cephalus L., 1758 (flathead mullet) is a valuable commercial fish and a promising object of artificial breeding in the Black Sea and the Sea of Azov, and the study of its parasite fauna is important for fishery and mariculture. Monogeneans of the genus Ligophorus are common ectoparasites dwell...

Full description

Saved in:
Bibliographic Details
Main Authors: E. A. Vodiasova, E. S. Chelebieva, O. V. Shikhat, D. M. Atopkin, E. V. Dmitrieva
Format: Article
Language:English
Published: Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders 2022-06-01
Series:Вавиловский журнал генетики и селекции
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/3363
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832575052057411584
author E. A. Vodiasova
E. S. Chelebieva
O. V. Shikhat
D. M. Atopkin
E. V. Dmitrieva
author_facet E. A. Vodiasova
E. S. Chelebieva
O. V. Shikhat
D. M. Atopkin
E. V. Dmitrieva
author_sort E. A. Vodiasova
collection DOAJ
description Mugil cephalus L., 1758 (flathead mullet) is a valuable commercial fish and a promising object of artificial breeding in the Black Sea and the Sea of Azov, and the study of its parasite fauna is important for fishery and mariculture. Monogeneans of the genus Ligophorus are common ectoparasites dwelling on the gills of mullets. Two representatives of this genus parasitise flathead mullet in the Azov-Black Sea region, namely Ligophorus mediterraneus Sarabeev, Balbuena et Euzet, 2005 and Ligophorus cephali Rubtsova, Balbuena, Sarabeev, Blasco-Costa et Euzet, 2006. Morphological identification of these species requires spending much time and a high level of experience in monogenean taxonomy. For quick and correct species identification of these parasites, we have developed a genotyping approach based on the polymerase chain reaction of allele-specific gene sites for various Monogenea species. A fragment of the 28S ribosomal gene, which includes conserved and variable sites, was chosen as a genetic marker. Three approaches were used as follows: amplified fragment length analysis, allelespecific PCR with endpoint detection and allele-specific real-time PCR using SYBR Green intercalating dye. The first approach was by obtaining PCR products of different lengths that were specific either to L. mediterraneus or to L. cephali. This approach was implemented due to the presence of several variable sites located at a distance from each other. The PCR mixture contained three primers: one forward and two reverse. The forward primer was complementary to the conserved site, which did not differ between species. Reverse primers were speciesspecific and, for each species, they were complementary to different DNA regions located 100 bp apart. As a result, L. mediterraneus was characterized by shorter amplicons than L. cephali. For the second and third approaches, a pair of primers was designed according to the following principle: the forward primer was complementary to both species, since it was selected for the conserved gene region. Reverse primers were species-specific and were designed for the 28S variable region. The two parasite species were distinguished by three-point mutations. Thus, one pair of primers was complementary to L. mediterraneus, the other, to L. cephali. The amplified fragment length analysis and the allele-specific real-time PCR demonstrated 100 % coincidence of genotyping results compared with Sanger sequencing. The developed genotyping protocols can be used not only to distinguish two species of Ligophorus from flathead mullet in ecological studies and veterinary practice but also for further development of similar approaches for other monogeneans, among which there are many pathogenic species.
format Article
id doaj-art-e7d094591aae47859b84ba3284356540
institution Kabale University
issn 2500-3259
language English
publishDate 2022-06-01
publisher Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders
record_format Article
series Вавиловский журнал генетики и селекции
spelling doaj-art-e7d094591aae47859b84ba32843565402025-02-01T09:58:11ZengSiberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and BreedersВавиловский журнал генетики и селекции2500-32592022-06-0126329029710.18699/VJGB-22-361261Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mulletE. A. Vodiasova0E. S. Chelebieva1O. V. Shikhat2D. M. Atopkin3E. V. Dmitrieva4A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of SciencesA.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of SciencesA.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of SciencesFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of SciencesA.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of SciencesMugil cephalus L., 1758 (flathead mullet) is a valuable commercial fish and a promising object of artificial breeding in the Black Sea and the Sea of Azov, and the study of its parasite fauna is important for fishery and mariculture. Monogeneans of the genus Ligophorus are common ectoparasites dwelling on the gills of mullets. Two representatives of this genus parasitise flathead mullet in the Azov-Black Sea region, namely Ligophorus mediterraneus Sarabeev, Balbuena et Euzet, 2005 and Ligophorus cephali Rubtsova, Balbuena, Sarabeev, Blasco-Costa et Euzet, 2006. Morphological identification of these species requires spending much time and a high level of experience in monogenean taxonomy. For quick and correct species identification of these parasites, we have developed a genotyping approach based on the polymerase chain reaction of allele-specific gene sites for various Monogenea species. A fragment of the 28S ribosomal gene, which includes conserved and variable sites, was chosen as a genetic marker. Three approaches were used as follows: amplified fragment length analysis, allelespecific PCR with endpoint detection and allele-specific real-time PCR using SYBR Green intercalating dye. The first approach was by obtaining PCR products of different lengths that were specific either to L. mediterraneus or to L. cephali. This approach was implemented due to the presence of several variable sites located at a distance from each other. The PCR mixture contained three primers: one forward and two reverse. The forward primer was complementary to the conserved site, which did not differ between species. Reverse primers were speciesspecific and, for each species, they were complementary to different DNA regions located 100 bp apart. As a result, L. mediterraneus was characterized by shorter amplicons than L. cephali. For the second and third approaches, a pair of primers was designed according to the following principle: the forward primer was complementary to both species, since it was selected for the conserved gene region. Reverse primers were species-specific and were designed for the 28S variable region. The two parasite species were distinguished by three-point mutations. Thus, one pair of primers was complementary to L. mediterraneus, the other, to L. cephali. The amplified fragment length analysis and the allele-specific real-time PCR demonstrated 100 % coincidence of genotyping results compared with Sanger sequencing. The developed genotyping protocols can be used not only to distinguish two species of Ligophorus from flathead mullet in ecological studies and veterinary practice but also for further development of similar approaches for other monogeneans, among which there are many pathogenic species.https://vavilov.elpub.ru/jour/article/view/3363genotypingallele-specific pcrmonogenea<i>ligophorusmugil cephalus</i>
spellingShingle E. A. Vodiasova
E. S. Chelebieva
O. V. Shikhat
D. M. Atopkin
E. V. Dmitrieva
Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet
Вавиловский журнал генетики и селекции
genotyping
allele-specific pcr
monogenea
<i>ligophorus
mugil cephalus</i>
title Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet
title_full Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet
title_fullStr Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet
title_full_unstemmed Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet
title_short Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet
title_sort molecular genetic approaches to species identification of platyhelminthes of the genus i ligophorus i monogenea parasitising flathead mullet
topic genotyping
allele-specific pcr
monogenea
<i>ligophorus
mugil cephalus</i>
url https://vavilov.elpub.ru/jour/article/view/3363
work_keys_str_mv AT eavodiasova moleculargeneticapproachestospeciesidentificationofplatyhelminthesofthegenusiligophorusimonogeneaparasitisingflatheadmullet
AT eschelebieva moleculargeneticapproachestospeciesidentificationofplatyhelminthesofthegenusiligophorusimonogeneaparasitisingflatheadmullet
AT ovshikhat moleculargeneticapproachestospeciesidentificationofplatyhelminthesofthegenusiligophorusimonogeneaparasitisingflatheadmullet
AT dmatopkin moleculargeneticapproachestospeciesidentificationofplatyhelminthesofthegenusiligophorusimonogeneaparasitisingflatheadmullet
AT evdmitrieva moleculargeneticapproachestospeciesidentificationofplatyhelminthesofthegenusiligophorusimonogeneaparasitisingflatheadmullet