On the Hardy-Littlewood maximal theorem
The Hardy-Littlewood maximal theorem is extended to functions of class PL in the sense of E. F. Beckenbach and T. Radó, with a more precise expression of the absolute constant in the inequality. As applications we deduce some results on hyperbolic Hardy classes in terms of the non-Euclidean hyperbol...
Saved in:
| Main Author: | Shinji Yamashita |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
1982-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1155/S0161171282000659 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Perspectives on Dynamic Hardy–Littlewood Inequalities in Time Scale Analysis
by: Taher S. Hassan, et al.
Published: (2025-07-01) -
Bessel–Riesz Operator in Variable Lebesgue Spaces <i>L<sup>p</sup></i><sup>(·)</sup>(<inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>)
by: Muhammad Nasir, et al.
Published: (2025-05-01) -
Edmund Hardy (1852-1904): Eine kommentierte Bibliographie
by: Oliver Krüger
Published: (2023-09-01) -
Edmund Hardy: Religionswissenschaft als empirische Kultur- und Geisteswissenschaft
by: Oliver Krüger
Published: (2023-09-01) -
Contributions to the Fractional Hardy Integral Inequality
by: Christophe Chesneau
Published: (2025-03-01)