HDL-ACO hybrid deep learning and ant colony optimization for ocular optical coherence tomography image classification
Abstract Optical Coherence Tomography (OCT) plays a crucial role in diagnosing ocular diseases, yet conventional CNN-based models face limitations such as high computational overhead, noise sensitivity, and data imbalance. This paper introduces HDL-ACO, a novel Hybrid Deep Learning (HDL) framework t...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-89961-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Optical Coherence Tomography (OCT) plays a crucial role in diagnosing ocular diseases, yet conventional CNN-based models face limitations such as high computational overhead, noise sensitivity, and data imbalance. This paper introduces HDL-ACO, a novel Hybrid Deep Learning (HDL) framework that integrates Convolutional Neural Networks with Ant Colony Optimization (ACO) to enhance classification accuracy and computational efficiency. The proposed methodology involves pre-processing the OCT dataset using discrete wavelet transform and ACO-optimized augmentation, followed by multiscale patch embedding to generate image patches of varying sizes. The hybrid deep learning model leverages ACO-based hyperparameter optimization to enhance feature selection and training efficiency. Furthermore, a Transformer-based feature extraction module integrates content-aware embeddings, multi-head self-attention, and feedforward neural networks to improve classification performance. Experimental results demonstrate that HDL-ACO outperforms state-of-the-art models, including ResNet-50, VGG-16, and XGBoost, achieving 95% training accuracy and 93% validation accuracy. The proposed framework offers a scalable, resource-efficient solution for real-time clinical OCT image classification. |
|---|---|
| ISSN: | 2045-2322 |