A Strongly Convergent Method for the Split Feasibility Problem
The purpose of this paper is to introduce and analyze a strongly convergent method which combined regularized method, with extragradient method for solving the split feasibility problem in the setting of infinite-dimensional Hilbert spaces. Note that the strong convergence point is the minimum norm...
Saved in:
Main Authors: | Yonghong Yao, Yeong-Cheng Liou, Naseer Shahzad |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/125046 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Regularized Methods for the Split Feasibility Problem
by: Yonghong Yao, et al.
Published: (2012-01-01) -
Strong Convergence on the Split Feasibility Problem by Mixing W-Mapping
by: Fugen Gao, et al.
Published: (2021-01-01) -
Strong Convergence of a Modified Extragradient Method to the Minimum-Norm Solution of Variational Inequalities
by: Yonghong Yao, et al.
Published: (2012-01-01) -
An Inertial Iterative Algorithm with Strong Convergence for Solving Modified Split Feasibility Problem in Banach Spaces
by: Huijuan Jia, et al.
Published: (2021-01-01) -
Iterative Methods of Weak and Strong Convergence Theorems for the Split Common Solution of the Feasibility Problems, Generalized Equilibrium Problems, and Fixed Point Problems
by: Shahram Rezapour, et al.
Published: (2020-01-01)