OMAL: A Multi-Label Active Learning Approach from Data Streams

With the rapid growth of digital computing, communication, and storage devices applied in various real-world scenarios, more and more data have been collected and stored to drive the development of machine learning techniques. It is also noted that the data that emerge in real-world applications ten...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiao Fang, Chen Xiang, Jicong Duan, Benallal Soufiyan, Changbin Shao, Xibei Yang, Sen Xu, Hualong Yu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/4/363
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid growth of digital computing, communication, and storage devices applied in various real-world scenarios, more and more data have been collected and stored to drive the development of machine learning techniques. It is also noted that the data that emerge in real-world applications tend to become more complex. In this study, we regard a complex data type, i.e., multi-label data, acquired with a time constraint in a dynamic online scenario. Under such conditions, constructing a learning model has to face two challenges: it requires dynamically adapting the variances in label correlations and imbalanced data distributions and it requires more labeling consumptions. To solve these two issues, we propose a novel online multi-label active learning (OMAL) algorithm that considers simultaneously adopting uncertainty (using the average entropy of prediction probabilities) and diversity (using the average cosine distance between feature vectors) as an active query strategy. Specifically, to focus on label correlations, we use a classifier chain (CC) as the multi-label learning model and design a label co-occurrence ranking strategy to arrange label sequence in CC. To adapt the naturally imbalanced distribution of the multi-label data, we select weight extreme learning machine (WELM) as the basic binary-class classifier in CC. The experimental results on ten benchmark multi-label datasets that were transformed into streams show that our proposed method is superior to several popular static multi-label active learning algorithms in terms of both the Macro-F1 and Micro-F1 metrics, indicating its specifical adaptions in the dynamic data stream environment.
ISSN:1099-4300