A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism
Abstract The development of compact, high‐speed, and energy‐efficient optical memories remains a significant challenge in photonic and plasmonic technologies. Conventional optical memories are inherently limited by light diffraction, restricting miniaturization and causing inefficient energy transfe...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-07-01
|
| Series: | Advanced Science |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/advs.202502890 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850101464769232896 |
|---|---|
| author | Shuichi Toyouchi Mathias Wolf Kenji Hirai Yasuhiko Fujita Tomoko Inose Beatrice Fortuni Eduard Fron Johan Hofkens Steven De Feyter James Hutchison Tsuyoshi Fukaminato Hiroshi Uji‐i |
| author_facet | Shuichi Toyouchi Mathias Wolf Kenji Hirai Yasuhiko Fujita Tomoko Inose Beatrice Fortuni Eduard Fron Johan Hofkens Steven De Feyter James Hutchison Tsuyoshi Fukaminato Hiroshi Uji‐i |
| author_sort | Shuichi Toyouchi |
| collection | DOAJ |
| description | Abstract The development of compact, high‐speed, and energy‐efficient optical memories remains a significant challenge in photonic and plasmonic technologies. Conventional optical memories are inherently limited by light diffraction, restricting miniaturization and causing inefficient energy transfer. A promising strategy to overcome these limitations is using propagating surface plasmon polaritons (SPPs), enabling the confinement and propagation of optical fields along metal interfaces, and allowing photonic devices to scale down to sub‐diffraction‐limit dimensions. This work presents an all‐plasmonic optical memory system based on silver nanowires (AgNWs) coated with photochromic diarylethene (DAE). By utilizing SPPs, reversible Write/Erase functions are achieved through multiphoton excitation, modulating the photostationary state of DAE. The refractive index changes regulate SPP propagation efficiency along the AgNW, with the memory state being read via plasmonic second‐harmonic generation. The synergy between nonlinear plasmonics in AgNWs and the photochromic properties of DAE enables complete memory operations, including writing, erasing, and reading ON/OFF states. This sub‐diffraction‐limit system paves the way for ultra‐compact, molecular‐scale optical memory devices. |
| format | Article |
| id | doaj-art-e72752f65b5442c49103fbe5e090210b |
| institution | DOAJ |
| issn | 2198-3844 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Wiley |
| record_format | Article |
| series | Advanced Science |
| spelling | doaj-art-e72752f65b5442c49103fbe5e090210b2025-08-20T02:40:00ZengWileyAdvanced Science2198-38442025-07-011227n/an/a10.1002/advs.202502890A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear PhotochromismShuichi Toyouchi0Mathias Wolf1Kenji Hirai2Yasuhiko Fujita3Tomoko Inose4Beatrice Fortuni5Eduard Fron6Johan Hofkens7Steven De Feyter8James Hutchison9Tsuyoshi Fukaminato10Hiroshi Uji‐i11Department of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumResearch Institute for Electronic Science (RIES) Hokkaido University N20W10, Kita ward Sapporo Hokkaido 001–0020 JapanDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumGraduate School of Science and Technology Kumamoto University 2‐39‐1 Kurokami Kumamoto 860–8555 JapanDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumMax Plank Institute for Polymer Research D‐55128 Mainz GermanySchool of Chemistry and ARC Centre of Excellence in Exciton Science University of Melbourne Parkville Victoria 3010 AustraliaDepartment of Chemistry KU Leuven, Celestijnenlaan 200F Leuven 3001 BelgiumAbstract The development of compact, high‐speed, and energy‐efficient optical memories remains a significant challenge in photonic and plasmonic technologies. Conventional optical memories are inherently limited by light diffraction, restricting miniaturization and causing inefficient energy transfer. A promising strategy to overcome these limitations is using propagating surface plasmon polaritons (SPPs), enabling the confinement and propagation of optical fields along metal interfaces, and allowing photonic devices to scale down to sub‐diffraction‐limit dimensions. This work presents an all‐plasmonic optical memory system based on silver nanowires (AgNWs) coated with photochromic diarylethene (DAE). By utilizing SPPs, reversible Write/Erase functions are achieved through multiphoton excitation, modulating the photostationary state of DAE. The refractive index changes regulate SPP propagation efficiency along the AgNW, with the memory state being read via plasmonic second‐harmonic generation. The synergy between nonlinear plasmonics in AgNWs and the photochromic properties of DAE enables complete memory operations, including writing, erasing, and reading ON/OFF states. This sub‐diffraction‐limit system paves the way for ultra‐compact, molecular‐scale optical memory devices.https://doi.org/10.1002/advs.202502890chemically synthesized silver nanowirenonlinear plasmonicsoptical memoryphotochromismplasmonic waveguide |
| spellingShingle | Shuichi Toyouchi Mathias Wolf Kenji Hirai Yasuhiko Fujita Tomoko Inose Beatrice Fortuni Eduard Fron Johan Hofkens Steven De Feyter James Hutchison Tsuyoshi Fukaminato Hiroshi Uji‐i A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism Advanced Science chemically synthesized silver nanowire nonlinear plasmonics optical memory photochromism plasmonic waveguide |
| title | A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism |
| title_full | A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism |
| title_fullStr | A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism |
| title_full_unstemmed | A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism |
| title_short | A Sub‐Diffraction‐Limit Dimension All‐Plasmonic Optical Memory Using Non‐Linear Photochromism |
| title_sort | sub diffraction limit dimension all plasmonic optical memory using non linear photochromism |
| topic | chemically synthesized silver nanowire nonlinear plasmonics optical memory photochromism plasmonic waveguide |
| url | https://doi.org/10.1002/advs.202502890 |
| work_keys_str_mv | AT shuichitoyouchi asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT mathiaswolf asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT kenjihirai asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT yasuhikofujita asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT tomokoinose asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT beatricefortuni asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT eduardfron asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT johanhofkens asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT stevendefeyter asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT jameshutchison asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT tsuyoshifukaminato asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT hiroshiujii asubdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT shuichitoyouchi subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT mathiaswolf subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT kenjihirai subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT yasuhikofujita subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT tomokoinose subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT beatricefortuni subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT eduardfron subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT johanhofkens subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT stevendefeyter subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT jameshutchison subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT tsuyoshifukaminato subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism AT hiroshiujii subdiffractionlimitdimensionallplasmonicopticalmemoryusingnonlinearphotochromism |